ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Chitinase  (2)
  • 1985-1989  (2)
  • 1930-1934
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Planta 174 (1988), S. 364-372 
    ISSN: 1432-2048
    Keywords: Chitinase ; Enzyme regulation (ethylene) ; Ethylene (enzyme regulation) ; β-1,3-Glucanase ; Hydrolase (antifungal) ; Phaseolus (ethylene-regulated enzymes)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Ethylene induced chitinase (EC 3.2.1.14) and β-1,3-glucanase (EC 3.2.1.29) to a similar extent in primary leaves of bean seedlings (Phaseolus vulgaris cv. Saxa). Both enzymes were purified from ethylene-treated leaves, and monospecific antibodies were raised aginst them. Ethylene treatments strongly increased the amount of immunore-active chitinase and β-1,3-glucanase. Ethylene enhanced synthesis of chitinase in vivo, as tested by immunoprecipitation after pulse-labelling with [35S]methionine. RNA was isolated from bean leaves and translated in a rabbit reticulocyte lysate system in vitro. The chitinase and the β-1,3-glucanase antiserum each precipitated a single polypeptide from the translation products. The precipitated polypeptides were 1500 and 4000 daltons larger, respectively, than native chitinase and native β-1,3-glucanase, indicating that the two enzymes were synthesized as precursors in vitro. The translatable mRNAs for both enzymes increased at least tenfold within 2 h in response to a treatment with ethylene. When ethylene was withdrawn after 8 h of incubation, the translatable mRNAs for both enzymes decreased somewhat more slowly, reaching the basal level about 25 h later. In all cases, there was a close correlation between the levels of translatable mRNA for chitinase and β-1,3-glucanase. A putative β-1,3-glucanase cDNA clone, pCH16, was isolated by hybrid-selected translation. The amount of β-1,3-glucanase mRNA, as measured by RNA blot analysis using pCH16 as a probe, increased rapidly in response to ethylene and decreased again after withdrawal of ethylene, indicating that the amount of hybridizable RNA and of translatable mRNA for β-1,3-glucanase were correlated. In conclusion, the results indicate that chitinase and β-1,3-glucanase are regulated co-ordinately at the level of mRNA.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2048
    Keywords: Allium (mycorrhiza) ; Chitinase ; Enzyme localization (immunocytochemical) ; Glomus ; Mycorrhiza (vesicular-arbuscular)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Chitinase (EC 3.2.1.14) activity was measured in roots of Allium prorrum L. (leek) during development of a vesicular-arbuscular mycorrhizal symbiosis with Glomus versiforme (Karst.) Berch. During the early stages of infection, between 10 and 20 d after inoculation, the specific activity of chitinase was higher in mycorrhizal roots than in the uninfected controls. However, 60–90 d after inoculation, when the symbiosis was fully established, the mycorrhizal roots contained much less chitinase than control roots. Chitinase was purified from A. porrum roots. An antiserum against beanleaf chitinase was found to cross-react specifically with chitinase in the extracts from non-mycorrhizal and mycorrhizal A. porrum roots. This antiserum was used for the immunocytochemical localization of the enzyme with fluorescent and gold-labelled probes. Chitinase was localized in the vacuoles and in the extracellular spaces of non-mycorrhizal and mycorrhizal roots. There was no immunolabelling on the fungal cell walls in the intercellular or the intracellular phases. It is concluded that the chitin in the fungal walls is inaccessible to plant chitinase. This casts doubts on the possible involvement of this hydrolase in the development of the mycorrhizal fungus. However, fungal penetration does appear to cause a typical defense response in the first stages that is later depressed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...