ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 34 (1988), S. 47-71 
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A Hartree-Fock (HF) self-consistent field (SCF) crystal orbital (CO) formalism for two- and three-dimensional (2D/3D) solids on the basis of semiempirical CNDO/INDO (complete neglect of differential overlap; intermediate neglect of differential overlap) Hamiltonians is presented. The employed SCF variants allow for the treatment of atomic species up to bromine under the inclusion of the first (i.e., 3d) transition metal series. Band structure investigations of 2D and 3D materials containing more than 30 atoms per unit cell are feasible by the present SCF HF CO formalism. The theoretical background of the computational scheme is given in this contribution. Special emphasis is placed on physically reliable truncation criteria for the lattice sums, the adaptation of the crystal symmetry in k space, as well as the suitable choice of domains in Brillouin zone (BZ) integrations required in the determination of charge-density matrices. The capability and limitations of the semiempirical SCF HF CO approach is demonstrated for some simpler solids by comparing the present computational results with those of ab initio CO schemes as well as conventional numerical methods in soid-state theory. The employed model solids are graphite and BN (2D and 3D networks for both solids) as well as diamond, silicon, germanium, and TiS2.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 34 (1988), S. 73-84 
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The two-dimensional (2D) band structure of (polyphthalocyaninato)Ni(II), Ni(ppc), has been analyzed by a self-consistent field (SCF) Hartree-Fock (HF) crystal orbital (CO) formalism based on an INDO (intermediate neglect of differential overlap) type Hamiltonian. The calculated HF band gap of Ni(ppc) amounts to 0.24 eV. The highest filled band is a ringlike a1u combination (D4h symmetry label) localized at the carbon sites of the organic fragment. Remarkable hybridization in the valence band leads to the considerable band width Δ∊v of 2.92 eV. This value is close to the Δ∊v numbers which are conventionally encountered in one-dimensional metallomacrocycles. The effective width of the states in Ni(ppc) is 13.8 eV. In graphite a net π interval of 13.0 eV is predicted by the present CO formalism; i.e., the energetic distribution of the π electrons is roughly comparable in both 2D solids. The Ni 3d states in Ni(ppc) are far below the Fermi level which is calculated at -4.9 eV; they are predicted between -12.2 and -16.4 eV in the mean-field approximation. Quasi-particle corrections lead to a significant shift of these strongly metal-centered states. Important electronic structure properties of Ni(ppc) are compared with those of 1D metallomacrocycles with similar molecular stoichiometry. The total density of states distribution of Ni(ppc) has been fragmented into projected (ligand π and σ, Ni 3d) contributions in order to allow for a transparent interpretation of the 2D band structure.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 34 (1988), S. 571-594 
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A systematic collection of spatial domains for reciprocal space integrations is derived for all possible crystal symmetries. This set can be used as a simpler alternative to the conventional Brillouin zones. The analysis is restricted to integrations where the function in the integrand satisfies inversion symmetry in k space. In this case only 24 different spatial domains have to be defined in order to allow for k space integrations in the 230 different crystal symmetries. A graphic representation of the asymmetric unit for each of the 24 integration domains is given. Special positions and the associated weighting factors required for numerical integrations in theoretical solid-state approaches are tabulated.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...