ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AERODYNAMICS  (11)
  • AIRCRAFT DESIGN, TESTING AND PERFORMANCE  (6)
  • 1985-1989  (17)
  • 1945-1949
Collection
Keywords
Years
Year
  • 1
    Publication Date: 2013-08-31
    Description: A transonic unsteady aerodynamic and aeroelastic code called CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) was developed for application to realistic aircraft configurations. It permits the calculation of steady and unsteady flows about complete aircraft configurations for aeroelastic analysis of the flutter critical transonic speed range. The CAP-TSD code uses a time accurate approximate factorization algorithm for solution of the unsteady transonic small disturbance potential equation. An overview is given of the CAP-TSD code development effort along with recent algorithm modifications which are listed and discussed. Calculations are presented for several configurations including the General Dynamics 1/9th scale F-16C aircraft model to evaluate the algorithm and hence the reliability of the CAP-TSD code in general. Calculations are also presented for a flutter analysis of a 45 deg sweptback wing which agree well with the experimental data. Descriptions are presented of the CAP-TSD code and algorithm details along with results and comparisons which demonstrate the stability, accuracy, efficiency, and utility of CAP-TSD.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: Transonic Symposium: Theory, Application, and Experiment, Volume 1, Part 2; p 467-496
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-31
    Description: A finite difference technique is used to solve the transonic small disturbance flow equation making use of shock capturing to treat wave discontinuities. Thus the nonlinear effects of thickness and angle of attack are considered. Such an approach is made feasible by the development of a new code called CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance), and is based on a fully implicit approximate factorization (AF) finite difference method to solve the time dependent transonic small disturbance equation. The application of the CAP-TSD code to the calculation of low to moderate supersonic steady and unsteady flows is presented. In particular, comparisons with exact linear theory solutions are made for steady and unsteady cases to evaluate shock capturing and other features of the current method. In addition, steady solutions obtained from an Euler code are used to evaluate the small disturbance aspects of the code. Steady and unsteady pressure comparisons are made with measurements for an F-15 wing model and for the RAE tailplane model.
    Keywords: AERODYNAMICS
    Type: Transonic Unsteady Aerodynamics and Aeroelasticity 1987, Part 1; p 117-137
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-31
    Description: The development of a new transonic code to predict unsteady flows about realistic aircraft configurations are described. An approximate factorization algorithm for solution of the unsteady transonic small disturbance equation is first described. Because of the superior stability characteristics of the AF algorithm, a new transonic aeroelasticity code was developed which is described in some detail. The new code was very easy to modify to include the additional aircraft components, so in a very short period of time the code was developed to treat complete aircraft configurations. Finally, applications are presented which demonstrate many of the geometry capabilities of the new code.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: Transonic Unsteady Aerodynamics and Aeroelasticity 1987, Part 1; p 63-95
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-08-31
    Description: The initial application of the CAP-TSD computer program for wing flutter analysis is presented. Computational Aeroelasticity Program - Transonic Small Disturbance (CAP-TSD) is based on an approximate factorization (AF) algorithm that is stable and efficient on supercomputers with vector arithmetic. CAP-TSD was used to calculate steady and unsteady pressures on wings and configurations at subsonic, transonic, and supersonic Mach numbers. However, the CAP-TSD code has been developed primarily for aeroelastic analysis. The initial efforts for validation of the aeroelastic analysis capability is presented. The initial applications include two series of symmetric, planar wing planforms. Well defined modal properties are available for these wings. In addition, transonic flutter boundaries are available for evaluation of the transonic capabilities of CAP-TSD.
    Keywords: AERODYNAMICS
    Type: Transonic Unsteady Aerodynamics and Aeroelasticity 1987, Part 2; p 463-475
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-19
    Keywords: AERODYNAMICS
    Type: Journal of Aircraft (ISSN 0021-8669); 26; 21-28
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-08-19
    Description: A transonic unsteady aerodynamic and aeroelasticity code called CAP-TSD was developed for application to realistic aircraft configurations. The code permits the calculation of steady and unsteady flows about complete aircraft configurations for aeroelastic analysis in the flutter critical transonic speed range. The CAP-TSD code uses a time accurate approximate factorization algorithm for solution of the unsteady transonic small disturbance potential equation. An overview is given of the CAP-TSD code development effort and results are presented which demonstrate various capabilities of the code. Calculations are presented for several configurations including the General Dynamics 1/9 scale F-16 aircraft model and the ONERA M6 wing. Calculations are also presented from a flutter analysis of a 45 deg sweptback wing which agrees well with the experimental data. Descriptions are presented of the CAP-TSD code and algorithm details along with results and comparisons which demonstrate these recent developments in transonic computational aeroelasticity.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: Computers and Structures (ISSN 0045-7949); 30; 1-2,; 29-37
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-08-19
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: Journal of Aircraft (ISSN 0021-8669); 26; 876-882
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-08-19
    Keywords: AERODYNAMICS
    Type: Journal of Aircraft (ISSN 0021-8669); 24; 392-398
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-28
    Description: A transonic unsteady aerodynamic and aeroelasticity code has been developed for application to realistic aircraft configurations. The new code is called CAP-TSD which is an acronym for Computational Aeroelasticity Program - Transonic Small Disturbance. The CAP-TSD code uses a time-accurate approximate factorization (AF) algorithm for solution of the unsteady transonic small-disturbance equation. The AF algorithm is very efficient for solution of steady and unsteady transonic flow problems. It can provide accurate solutions in only several hundred time steps yielding a significant computational cost savings when compared to alternative methods. The new code can treat complete aircraft geometries with multiple lifting surfaces and bodies including canard, wing, tail, control surfaces, launchers, pylons, fuselage, stores, and nacelles. Applications are presented for a series of five configurations of increasing complexity to demonstrate the wide range of geometrical applicability of CAP-TSD. These results are in good agreement with available experimental steady and unsteady pressure data. Calculations for the General Dynamics one-ninth scale F-16C aircraft model are presented to demonstrate application to a realistic configuration. Unsteady results for the entire F-16C aircraft undergoing a rigid pitching motion illustrated the capability required to perform transonic unsteady aerodynamic and aeroelastic analyses for such configurations.
    Keywords: AERODYNAMICS
    Type: NASA-TM-89120 , NAS 1.15:89120 , AIAA PAPER 87-0850
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-06-28
    Description: A transonic unsteady aerodynamic and aeroelasticity code called CAP-TSD was developed for application to realistic aircraft configurations. The code permits the calculation of steady and unsteady flows about complete aircraft configurations for aeroelastic analysis in the flutter critical transonic speed range. The CAP-TSD code uses a time accurate approximate factorization algorithm for solution of the unsteady transonic small disturbance potential equation. An overview is given of the CAP-TSD code development effort and results are presented which demonstrate various capabilities of the code. Calculations are presented for several configurations including the General Dynamics 1/9 scale F-16 aircraft model and the ONERA M6 wing. Calculations are also presented from a flutter analysis of a 45 deg sweptback wing which agrees well with the experimental data. Descriptions are presented of the CAP-TSD code and algorithm details along with results and comparisons which demonstrate these recent developments in transonic computational aeroelasticity.
    Keywords: AERODYNAMICS
    Type: NASA-TM-100663 , NAS 1.15:100663
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...