ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Engineering General  (1)
  • Wiley-Blackwell  (1)
  • Cambridge University Press
  • 1985-1989  (1)
  • 1970-1974
  • 1955-1959
  • 1935-1939
Collection
Publisher
  • Wiley-Blackwell  (1)
  • Cambridge University Press
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 26 (1988), S. 1213-1233 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: The paper presents a general hierarchical formulation applicable to both elliptic and hyperbolic problems. Static and eigenvalue linear elastic problems as well as convection-diffusion problems are studied. The hierarchical formulation is well suited for adaptive procedures.For the convection-diffusion problem the hierarchical approximation is made in time only. Different hierarchical functions are proposed for different types of problems. Both weighted residual and least-squares formulations are applied. A combination of these two gives a penalty method with a constraint equation corresponding to the least-squares method. A whole class of time integration formulae is obtained. These are all suitable for adaptive procedures owing to the hierarchical approximation in the time domain. If a linear discontinuous hierarchical base function is used in the Galerkin weak formulation, the method so obtained corresponds to the discontinuous Galerkin method in time and is especially suited for convection dominated problems. The streamline-diffusion method is found to be the aforementioned penalty method.This paper also examines the sequence of nested equation systems that results from a hierarchical finite element formulation. Properties of these systems arising from static problems are investigated. The paper presents some new possibilities for iterative solution of hierarchic element equations, and different procedures are compared in a numerical example. Finally, a simple ID convection-diffusion problem clearly shows that the proposed hierarchical formulation in time gives a stable and accurate solution even for convection dominated flow.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...