ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1993-02-01
    Print ISSN: 0020-7136
    Electronic ISSN: 1097-0215
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-19
    Description: Simulations are conducted to investigate a proposed NASA launch vehicle that is fully reusable, takes off horizontally, and uses airbreathing propulsion in a single stage. The propulsion model is based on a cycle analysis method, and the vehicle is assumed to be a rigid structure with distributed fuel, operating under a range of atmospheric conditions. The program to optimize simulated trajectories (POST) is modified to include a predictor-corrector guidance capability and then used to generate the trajectories. Significant errors are encountered during the unpowered coast phase due to uncertainty in the atmospheric density profile. The amount of ascent propellant needed is shown to be directly related to the thrust-vector angle and the location of the center of gravity of the vehicle because of the importance of aim-drag losses to total ideal velocity.
    Keywords: LAUNCH VEHICLES AND SPACE VEHICLES
    Type: Journal of Guidance, Control, and Dynamics (ISSN 0731-5090); 14; 834-839
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-31
    Description: Hypersonic vehicle control law development using H(infinity) and mu-synthesis is discussed. Airbreathing SSTO vehicles has a mutli-faceted mission that includes orbital operations, as well as re-entry and descent culminating in horizontal landing. However, the most challenging part of the operations is the ascent to orbit. The airbreathing propulsion requires lengthy atmospheric flight that may last as long as 30 minutes and take the vehicle half way around the globe. The vehicles's ascent is characterized by tight payload to orbit margins which translate into minimum fuel orbit as the performance criteria. Issues discussed include: SSTO airbreathing vehicle issues; control system performance requirements; robust control law framework; H(infinity) controller frequency analysis; and mu controller frequency analysis.
    Keywords: AIRCRAFT STABILITY AND CONTROL
    Type: NASA LaRC Workshop on Guidance, Navigation, Controls, and Dynamics for Atmospheric Flight, 1993; p 193-208
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: An atmospheric disturbance model (ADM) is developed that considers the requirements of advanced aerospace vehicles and balances algorithmic assumptions with computational constraints. The requirements for an ADM include a realistic power spectrum, inhomogeneity, and the cross-correlation of atmospheric effects. The baseline models examined include the Global Reference Atmospheric Model Perturbation-Modeling Technique, the Dryden Small-Scale Turbulence Description, and the Patchiness Model. The Program to Enhance Random Turbulence (PERT) is developed based on the previous models but includes a revised formulation of large-scale atmospheric disturbance, an inhomogeneous Dryden filter, turbulence statistics, and the cross-correlation between Dryden Turbulence Filters and small-scale thermodynamics. Verification with the Monte Carlo approach demonstrates that the PERT software provides effective simulations of inhomogeneous atmospheric parameters.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: AIAA PAPER 92-0294
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Description: The control system design for a Single Stage To Orbit (SSTO) air breathing vehicle will be central to a successful mission because a precise ascent trajectory will preserve narrow payload margins. The air breathing propulsion system requires the vehicle to fly roughly halfway around the Earth through atmospheric turbulence. The turbulence, the high sensitivity of the propulsion system to inlet flow conditions, the relatively large uncertainty of the parameters characterizing the vehicle, and continuous acceleration make the problem especially challenging. Adequate stability margins must be provided without sacrificing payload mass since payload margins are critical. Therefore, a multivariable control theory capable of explicitly including both uncertainty and performance is needed. The H(infinity) controller in general provides good robustness but can result in conservative solutions for practical problems involving structured uncertainty. Structured singular value mu framework for analysis and synthesis is potentially much less conservative and hence more appropriate for problems with tight margins. An SSTO control system requires: highly accurate tracking of velocity and altitude commands while limiting angle-of-attack oscillations, minimized control power usage, and a stabilized vehicle when atmospheric turbulence and system uncertainty are present. The controller designs using H(infinity) and mu-synthesis procedures were compared. An integrated flight/propulsion dynamic mathematical model of a conical accelerator vehicle was linearized as the vehicle accelerated through Mach 8. Vehicle acceleration through the selected flight condition gives rise to parametric variation that was modeled as a structured uncertainty. The mu-analysis approach was used in the frequency domain to conduct controller analysis and was confirmed by time history plots. Results demonstrate the inherent advantages of the mu framework for this class of problems.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-TM-4562 , L-17217 , NAS 1.15:4562
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Description: The results of a study to investigate concepts for minimizing trim drag of horizontal takeoff single-stage-to-orbit (SSTO) vehicles are presented. A generic hypersonic airbreathing conical configuration was used as the subject aircraft. The investigation indicates that extreme forward migration of the aerodynamic center as the vehicle accelerates to orbital velocities causes severe aerodynamic instability and trim moments that must be counteracted. Adequate stability can be provided by active control of elevons and rudder, but use of elevons to produce trim moments results in excessive trim drag and fuel consumption. To alleviate this problem, two solution concepts are examined. Active control of the center of gravity (COG) location to track the aerodynamic center decreases trim moment requirements, reduces elevon deflections, and leads to significant fuel savings. Active control of the direction of the thrust vector produces required trim moments, reduces elevon deflections, and also results in significant fuel savings. It is concluded that the combination of active flight control to provide stabilization, (COG) position control to minimize trim moment requirements, and thrust vectoring to generate required trim moments has the potential to significantly reduce fuel consumption during ascent to orbit of horizontal takeoff SSTO vehicles.
    Keywords: AIRCRAFT STABILITY AND CONTROL
    Type: NASA-TM-102687 , NAS 1.15:102687
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: Aerodynamic, propulsion, and mass models for a generic, horizontal-takeoff, single-stage-to-orbit (SSTO) configuration are presented which are suitable for use in point mass as well as batch and real-time six degree-of-freedom simulations. The simulations can be used to investigate ascent performance issues and to allow research, refinement, and evaluation of integrated guidance/flight/propulsion/thermal control systems, design concepts, and methodologies for SSTO missions. Aerodynamic force and moment coefficients are given as functions of angle of attack, Mach number, and control surface deflections. The model data were estimated by using a subsonic/supersonic panel code and a hypersonic local surface inclination code. Thrust coefficient and engine specific impulse were estimated using a two-dimensional forebody, inlet, nozzle code and a one-dimensional combustor code and are given as functions of Mach number, dynamic pressure, and fuel equivalence ratio. Rigid-body mass moments of inertia and center of gravity location are functions of vehicle weight which is in turn a function of fuel flow.
    Keywords: AIRCRAFT STABILITY AND CONTROL
    Type: NASA-TM-102610 , NAS 1.15:102610
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-28
    Description: Applicability and effectivness of robust control techniques to a single-stage-to-orbit (SSTO) airbreathing hypersonic vehicle on an ascent accelerating path and their effectivness are explored in this paper. An SSTO control system design problem, requiring high accuracy tracking of velocity and altitude commands while limiting an angle of attack oscillations, minimizing control power usage and stabilizing the vehicle all in the presence of atmospheric turbulence and uncertainty in the system, was formulated to compare results of the control designs using H infinity and mu-synthesis procedures. The math model, an integrated flight/propulsion dynamic model of a conical accelerator class vehicle, was linearized as the vehicle accelerated through Mach 8. Controller analysis was conducted using the singular value technique and the mu-analysis approach. Analysis results were obtained in both the frequency and the time domains. The results clearly demonstrate the inherent advantages of the structured singular value framework for this class of problems. Since payload performance margins are so critical for the SSTO mission, it is crucial that adequate stability margins be provided without sacrificing any payload mass.
    Keywords: AIRCRAFT STABILITY AND CONTROL
    Type: AIAA PAPER 92-5010 , AIAA, International Aerospace Planes Conference; Dec 01, 1992 - Dec 04, 1992; Orlando, FL; United States|; 12 p.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: Applicability and effectiveness of robust control techniques to a single-stage-to-orbit (SSTO) airbreathing hypersonic vehicle on an ascent accelerating path and their effectiveness are explored in this paper. An SSTO control system design problem, requiring high accuracy tracking of velocity and altitude commands while limiting angle of attack oscillations, minimizing control power usage and stabilizing the vehicle all in the presence of atmospheric turbulence and uncertainty in the system, was formulated to compare results of the control designs using H infinity and mu-synthesis procedures. The math model, an integrated flight/propulsion dynamic model of a conical accelerator class vehicle, was linearized as the vehicle accelerated through Mach 8. Controller analysis was conducted using the singular value technique and the mu-analysis approach. Analysis results were obtained in both the frequency and the time domains. The results clearly demonstrate the inherent advantages of the structured singular value framework for this class of problems. Since payload performance margins are so critical for the SSTO mission, it is crucial that adequate stability margins be provided without sacrificing any payload mass.
    Keywords: AIRCRAFT STABILITY AND CONTROL
    Type: NASA-TM-107689 , NAS 1.15:107689 , AIAA International Aerospace Planes Conference; Dec 01, 1992 - Dec 04, 1992; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...