ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : American Institute of Physics (AIP)
    Physics of Fluids 4 (1992), S. 220-224 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The rotational velocity of neutrally buoyant particles was measured in a planar Couette flow. The flow cross section is rectangular with a 4-to-1 (200 mm/50 mm) aspect ratio. The mixtures consist of uniform polystyrene spheres and a glycerol–water solution of specific density 1.052. Four sphere sizes have been tested: 3, 4.76, 6.35, and 7.94 mm. Particle motion in turbulent flow was recorded with a high-speed SP-2000 motion analysis system. The characteristics of particle motion, including particle spin, were measured as a function of the distance from the wall, at three shear rates corresponding to Re=4.6, 6.8, and 9.2×104. It was found that the particle angular velocity normalized by shear rate is a function of the normalized distance to the moving and stationary walls. The flow conditions are defined with measurements on mean velocities, particle velocity fluctuations, kinetic energy, inertial stresses, and diffusion coefficients.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 16 (1993), S. 65-81 
    ISSN: 0271-2091
    Keywords: Probabilistic numerical method ; Neumann expansion method ; Fluid flow ; Solid-liquid two-phase flow ; Stochastic process ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Solid-particle motion and related transport phenomena in two-phase flow are fluctuating processes in space and time. A deterministic method can describe only partially the intrinsic physics of these processes. In this paper, the fluctuations of the flow parameters are modelled by considering the spatial correlations, and a probabilistic computational method for two-phase flow is presented. The probabilistic governing equations have been discretized in space using a finite volume method, and then solved by applying the Neumann expansion method. This last method is time efficient, and its convergence can be guaranteed even for large fluctuations. A liquid-solid particle mixture flow in a circular pipe is taken as an example. Computational results illustrate the merit of the probabilistic approach for the prediction of two-phase flow phenomena.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1992-02-01
    Print ISSN: 0899-8213
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...