ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-12-16
    Description: The biologically relevant interactions of a transcription factor are those that are important for function in the organism. Here, a transgenic rescue assay was used to determine which molecular functions of Drosophila CCAAT/enhancer binding protein (C/EBP), a basic region-leucine zipper transcription factor, are required for it to fulfill its essential role during development. Chimeric proteins that contain the Drosophila C/EBP (DmC/EBP) basic region, a heterologous zipper, and a heterologous activation domain could functionally substitute for DmC/EBP. Mammalian C/EBPs were also functional in Drosophila. In contrast, 9 of 25 single amino acid substitutions in the basic region disrupted biological function. Thus, the conserved basic region specifies DmC/EBP activity in the organism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rorth, P -- New York, N.Y. -- Science. 1994 Dec 16;266(5192):1878-81.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Embryology, Carnegie Institution of Washington, Baltimore, MD 21210.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7997882" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Animals, Genetically Modified ; Base Sequence ; Basic-Leucine Zipper Transcription Factors ; CCAAT-Enhancer-Binding Proteins ; DNA/metabolism ; DNA-Binding Proteins/chemistry/genetics/*physiology ; Drosophila/genetics/*growth & development ; Female ; G-Box Binding Factors ; *Leucine Zippers ; Male ; Molecular Sequence Data ; Nuclear Proteins/chemistry/genetics/*physiology ; Recombinant Fusion Proteins ; Transcription Factors/chemistry/genetics/*physiology ; Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1992-10-01
    Description: Members of the CCAAT/enhancer binding protein (C/EBP) family have been shown to regulate the terminal differentiation of adipocytes and hepatocytes. In these cell lineages, high levels of C/EBP alpha are found only in mature, nondividing cells. Using Western blotting and immunohistochemical staining, we have determined the temporal order of expression for C/EBP alpha, C/EBP beta, and C/EBP delta in differentiating myelomonocytic marrow cells. These studies show a unique temporal pattern of C/EBP isoform expression in the myeloid lineage. In particular, C/EBP alpha expression is very high in proliferative myelomonocytic cells, and diminishes during phenotypic maturation. While we have detected C/EBP alpha, C/EBP beta, and C/EBP delta in multiple myeloid leukemia cell lines, and C/EBP alpha in normal myeloid cells and in de novo human myeloid leukemias, we have not detected these C/EBP isoforms in either erythroid or lymphoid cells. Finally, we show that C/EBP alpha, C/EBP beta, and C/EBP delta protein and messenger RNA levels correlate in maturing granulocytic cells. The formation of tissue-specific combinations of C/EBP homodimers and heterodimers may allow this family of transcription factors to regulate different sets of genes in adipocytes, hepatocytes, and myelomonocytes.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1992-10-01
    Description: Members of the CCAAT/enhancer binding protein (C/EBP) family have been shown to regulate the terminal differentiation of adipocytes and hepatocytes. In these cell lineages, high levels of C/EBP alpha are found only in mature, nondividing cells. Using Western blotting and immunohistochemical staining, we have determined the temporal order of expression for C/EBP alpha, C/EBP beta, and C/EBP delta in differentiating myelomonocytic marrow cells. These studies show a unique temporal pattern of C/EBP isoform expression in the myeloid lineage. In particular, C/EBP alpha expression is very high in proliferative myelomonocytic cells, and diminishes during phenotypic maturation. While we have detected C/EBP alpha, C/EBP beta, and C/EBP delta in multiple myeloid leukemia cell lines, and C/EBP alpha in normal myeloid cells and in de novo human myeloid leukemias, we have not detected these C/EBP isoforms in either erythroid or lymphoid cells. Finally, we show that C/EBP alpha, C/EBP beta, and C/EBP delta protein and messenger RNA levels correlate in maturing granulocytic cells. The formation of tissue-specific combinations of C/EBP homodimers and heterodimers may allow this family of transcription factors to regulate different sets of genes in adipocytes, hepatocytes, and myelomonocytes.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...