ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994  (2)
  • 1
    ISSN: 1432-1424
    Keywords: erythrocyte ; ESR ; water ; permeability ; microviscosity ; transport ; osmosis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary Red cell water volumes were measured using ESR methods during transient osmotic perturbation, and under equilibrium conditions. Cell water contents were determined using the spin label Tempone (2,2,6,6-tetramethyl piperidine-N-oxyl) and the membrane impermeable quencher potassium chromium oxalate. With appropriate corrections for intracellular viscosity and changes in cavity sensitivity, equilibrium cell water measured both by electron spin resonance (ESR) and wet minus dry weight methods gave excellent agreement in solutions from 243–907 mOsm. Intracellular viscosities determined from the Tempone correlation times in the same cells gave values ranging from 9–47 centipoise at 21°C. Osmotically induced transient volume changes were measured using Tempone and an ESR stopped-flow configuration. The Tempone response time was estimated at 17 msec compared to 250–350 msec for normal water relaxations. Nonlinear least square solutions to the Kedem-Katchalsky equations including a correction for the finite Tempone permeability gave 0.029 and 0.030 cm/sec for the osmotic permeability of RBCs in swell and shrink experiments, respectively. In stopped-flow experiments accurate water flux data are obtained very soon after challenging cells and do not require baseline subtractions. These results represent significant improvements over conventional light scattering techniques which necessitate corrections for long lasting optical artifacts (200–300 msec), and baseline drifts.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 133 (1993), S. 85-97 
    ISSN: 1432-1424
    Keywords: urea transport ; erythrocytes ; mercurials ; spin labels ; electron spin resonance ; hydrophobicity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary In this paper a variety of mercurials, including a pCMB-nitroxide analogue, were used to study urea transport in human red cell ghosts. It was determined that the rate of inhibition for pCMBS, pCMB, pCMB-nitroxide, and chlormerodrin extended over four orders of magnitude consistent with their measured oil/water partition coefficients. From these results, we concluded that a significant hydrophobic barrier limits access to the urea inhibition site, suggesting that the urea site is buried in the bilayer or in a hydrophobic region of the transporter. In contrast, the rate of water inhibition by the mercurials ranged by only a factor of four and did not correlate with their hydrophobicities. Thus, the water inhibition site may be more directly accessible via the aqueous phase. Under conditions that leave water transport unaffected, we determined that ≤32,000 labeled sites per cell corresponded to complete inhibition of urea transport. This rules out major transmembrane proteins such as band 3, the glucose carrier, and CHIP28 as candidates for the urea transporter. In contrast, this result is consistent with the Kidd (Jk) antigen being the urea transporter with an estimated 14,000 copies per cell. From the experimental number of urea sites, a turnover number between 2–6×106 sec−1 at 22°C is calculated suggesting a channel mechanism.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...