ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Water, air & soil pollution 72 (1994), S. 265-283 
    ISSN: 1573-2932
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Sewage sludges from six wastewater treatment plants in Hawaii were periodically sampled to determine the seasonal variation of their elemental composition. The Sand Island and Honouliuli treatment plants produced primary sludges averaging 1.6% and 2.0% total N, respectively. The Kailua, Kaneohe, Waimanalo, and Waianae treatment plants produced secondary sludges averaging 5.4, 5.1, 6.1, and 3.5% N, respectively. All the sludges tested were virtually devoid of K with concentration ranging from 0.01 to 0.15%, which was less than half of the 0.30% K considered typical for a US sewage sludge. Mean concentrations of Cd, Cu, Fe, Ni, and Zn in the Hawaii sludges were 5.9, 373, 12343, 218, 36.7, and 817 mg kg−1, respectively, which were within the norms for sludge heavy metals as reported by the US Environmental Protection Agency. Seasonal variations in elemental concentration were small and only statistically significant for Ca and Zn. Sludges from the three treatment plants with highest annual production (Sand Island, Honouliuli, and Kailua) were then mixed at 5, 50, and 250 g kg−1 with three representative tropical soils (a Mollisol, and Oxisol, and an Ultisol) to study sludge-soil reactions and plant responses. Soil-solution data indicated that chemical properties of a sludge-soil mixture depended not only on the soil, sludge, and its application rate, but also on sludge-soil interactions. At an agricultural rate of 5 g kg−1 (10 Mg ha−1), the anaerobically digested Kailua sludge increased corn (Zea mays L.) biomass, whereas the two undigested sludges reduced it. At higher rates, Mn phytotoxicity resulted from sludge applications to the Mollisol and Oxisol, both of which contained reducible Mn nodules. Significant growth reductions would be expected when corn seedlings contained ≥200 mg Mn kg−1 or ≤0.30 % Ca; and, adequate supplies of Ca and Zn seemed to lessen Mn phytotoxicity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 134 (1991), S. 65-72 
    ISSN: 1573-5036
    Keywords: acidity ; aluminium ; calcium ; citrus ; continuous-function design ; legumes ; manganese ; phosphorus ; soil mineral ; sulphur ; variable charge ; weathered soils
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Plant-soil interactions in weathered soils are so complex that unqualified statements about a suitable pH for plants are risky. Conventional experimental designs and statistical methods may not be appropriate for investigating such complexities. Lime experiments using continuous function designs and observation of plant response to indigenous variability in soil pH permit detailed observations of plant-soil interactions that are frequently not detected. A graphical boundary-line approach to interpreting data can make good sense out of apparent confusion. Increasing the pH of variable-charge soils by adding lime or by indigenous means increased CEC and retarded cation leaching, but Ca solubility changed very little over the range pH 5 to 6. N fixation and yield was closely related to soil pH, soil Mn and Mn uptake by soybean. This result was clearly demonstrated regardless of numerous other limiting factors. Plant yield response curves resolved into distinct segments that corresponded with associated soil properties. Excess Al compounded by Ca deficiency is suspect in the pH range 〈5. Excess Mn, and Ca deficiency probably limited yields in the pH range 5.0 to 5.7. Yields were stable, and Ca and P were constant in the pH interval 5.7 to 6.0. Yields abruptly increased in the pH interval 6.0 to 6.3. This was associated with elevated Ca concentrations in soil solutions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 163 (1994), S. 131-139 
    ISSN: 1573-5036
    Keywords: acid sulfate soils ; acidity tolerance ; Ca deficiency ; Ca/Al ratio ; Al toxicity ; critical Al concentration ; tropical green manures
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The growth of four tropical legumes (Cajanus cajan, Sesbania aculeata, S. rostrata, and S. speciosa) used as green manures in the tropics was studied in a glasshouse experiment. Two acid sulfate soils (Typic Sulfaquept, Bang Pakong Series; and Sulfic Tropaquept, Rangsit Series) were adjusted to four pH levels: 3.8 or 4.0 (original soil pH), 4.5, 5.5, and 6.5 (amended with lime). Dry weight was determined 49 days after sowing. Concentrations of N, P, K, Ca, Mg, Fe, Mn, and Al were also determined in aerial plant parts at harvest. The legumes responded differently to soil acidity and liming, but not to soil type. Cajanus cajan had the highest biomass production, followed by S. aculeata, S. rostrata and S. speciosa, in this order. The N concentration closely paralleled biomass production, suggesting that the growth of symbiotic rhizobia and nodulation were perhaps more susceptible to soil acidity than were the host plants. Liming to pH 5.5–6.0 was recommended for the legumes' growth based on the quadratic relationships between dry-matter yield and soil pH. In the unlimed soils, the Ca concentration in C. cajan and S. aculeata (0.32%) was twice as high as that in the two low-yielding legumes (0.15%). Furthermore, plant Ca increased exponentially (or quadratically in case of S. speciosa) as lime additions increased. It was estimated that for adequate growth, the Ca requirement in the shoot dry matter was approximately: C. cajan 1.2% Ca, S. aculeata 0.8%, S. rostrata 0.6%, and S. speciosa 0.4%. In contrast with Ca, the concentration of Fe, and to a lesser extent Mn, was significantly lower in C. cajan and S. aculeata than in S. rostrata and S. speciosa. The ratio of Ca to Al in plant tops was used to characterize plant tolerance to soil acidity, and to quantify the critical Al concentration in the plants. It appears that ≥ 90% maximum growth was attained only when Ca/Al was ≥ 150 for C. cajan and S. speciosa, ≥ 200 for S. rostrata, and ≥ 300 for S. aculeata. Cajanus cajan tolerated up to 80 mg Al kg-1 in the shoot dry matter, whereas significant growth reduction occurred in the Sesbania species at levels 〉 30 mg Al kg-1.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-5036
    Keywords: Ca deficiency ; critical Ca level ; crop response ; liming ; Mn toxicity nutrient interaction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Effects of coralline lime, in combination with 3 kg Cu ha−1 plus 3 kg Zn ha−1, on yield and nutrient uptake by peanut (Arachis hypogea) were studied at three locations in Western Samoa. Coarse (0–10 mm) coralline lime material containing 31.1% Ca and 1.7% Mg was used as lime at 0, 555, 2222 and 5000 kg ha−1. In the Togitogiga soil, which had the lowest level of exchangeable Ca, peanut yield increased by 6 fold after liming with 555 kg ha−1, relative to the unamended control. This yield increase was associated with reduced Mn toxicity as well as reduced Ca deficiency. The alleviation of Mn toxicity was not likely due to decreased Mn solubility because the lime application (555 kg ha−1) increased soil pH by 〈0.1 unit. Rather it was the increased Ca availability which reduced the Mn toxicity through a Ca/Mn antagonism. The critical range of exchangeable Ca for peanut growth was found to be about 1.5–1.6 cmol 1/2Ca2+ kg−1. A Ca/Mn-ratio 〉80 was required for a desirable Ca/Mn balance in peanut tissue. On the other two locations (with exchangeable Ca levels of 1.5–1.6 cmol 1/2Ca2+ kg−1), liming increased peanut yields by 15–20%. Additions of Cu plus Zn also increased the yields, although the increases were small (7%) and not significant at the 95% probability level.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 36 (1993), S. 211-219 
    ISSN: 1573-0867
    Keywords: banding ; broadcasting ; Ca deficiency ; crop response ; liming ; Mn toxicity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Effects of coralline lime on yield and nutrient uptake by sweet corn (Zea mays saccharata Sturt.) and peanut (Arachis hypogea) were studied at three locations in Western Samoa. Coarse (0-10 mm) coralline material containing 31.1% Ca and 1.67% Mg was used as lime. There were two modes of application: band and broadcast, and three rates: 6, 12 and 18 ton ha−1. In the highest rainfall location, marketable yields were increased by 250% for peanut and 160% for sweet corn by liming at 6 ton ha−1, relative to the unamended control. Peanut yield increases were associated with reduced Mn toxicity and/or with Ca and Mg deficiency. Sweet corn was less susceptible to Mn toxicity, but more responsive to exchangeable Ca. The critical level of exchangeable Ca was found to be about 2.0 cmol(+)kg−1. Applying lime to a band of 0.25-m wide did not reduce yield relative to broadcast. Soil cultivation caused the lime to spread over a wider band, diluting the applied calcium with a larger soil volume, suggesting that less than 6 ton ha−1 broadcast coarse coralline lime could still be adequate for most Samoan soils.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-0867
    Keywords: crop response ; leaching ; liming ; nonexchangeable potassium ; nutrient retention
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Effects of coralline lime and leaching on dry matter production and nutrient uptake by maize (Zea mays) were studied in 21 cm deep leaching columns/pots filled with an Oxic Inceptisol (12 kg) from Alafua, Western Samoa. Ground (〈0.25mm) coralline material containing approximately 80% CaCO3 was used as lime. There were 12 treatments, factorially arranged: 4 liming rates (0, 10.5, 21.0 and 31.5 g pot−1) which were applied to the top 5 cm of the pots, and 3 K applications (0, 0.69 1.38 g pot−1) which were applied after the initial leaching period of 10 days (3 1 pot−1 day−1) following the lime applications. Leaching continued for 15 more days, using 1 1 pot−1 day−1, after K fertilizations. During the initial leaching period, liming intensified K losses. The applied Ca-ions displaced the exchangeable K which was subsequently leached out of the pots. During the second leaching period, liming increased K retention only when K concentrations in the soil were high (treatment receiving 1.38 g K pot−1). These effects of liming and leaching on K retention were not detectable in the nutrient uptake of maize grown for 50 days after the second leaching period. This may have been because the leaching losses made up only approximately 2 % of the K-turnover in the pots. A calculated nutrient balance for the pots showed that a large portion of K taken up by maize came out of a pool of nonexchangeable K. The Alafua soil had 0.45 % (11.5 cmol(+)kg−1) total-K, indicating a relatively large K reserve. Since mineralogical studies failed to detect the presence of any known 2:1 minerals, the K reserve of the Alafua soil might be located in amorphous material.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1992-01-01
    Print ISSN: 0361-5995
    Electronic ISSN: 1435-0661
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1993-01-01
    Print ISSN: 0361-5995
    Electronic ISSN: 1435-0661
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1994-01-01
    Print ISSN: 0049-6979
    Electronic ISSN: 1573-2932
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1993-01-01
    Print ISSN: 1385-1314
    Electronic ISSN: 1573-0867
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...