ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994  (4)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 1991-02-01
    Print ISSN: 0006-8314
    Electronic ISSN: 1573-1472
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1994-01-01
    Print ISSN: 0006-8314
    Electronic ISSN: 1573-1472
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Boundary layer meteorology 54 (1991), S. 249-276 
    ISSN: 1573-1472
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Energy fluxes over an area of “homogeneous” suburban residential land-use in Vancouver, B.C., Canada are shown to vary by up to 25–40% within horizontal scales on the order of 102–103 m. Previously, variability of this magnitude has been expected to occur only at larger scales, between land-use zones or as urban-rural differences. In view of these findings, it is recognized that microadvective interaction between surface types at small scales may be important and can affect the energy balance even at larger scales. The present study discusses the small-scale spatial variability of energy fluxes and shows that it varies greatly for each term in the surface energy balance. Net radiation shows a relatively conservative behaviour (via albedo-surface temperature feedback) with little spatial variability. The turbulent fluxes (measured by eddy correlation at 28 m height), on the other hand, show a link between their temporal and spatial variability as the result of a temporally shifting source area which contains varying combinations of surface cover (using the dynamical source area concept of Schmid and Oke, 1990). As a result, part of the measured temporal variation is attributable to spatial differences in surface cover. Anthropogenic heat flux and storage heat flux (both modelled using a high resolution surface data-base) exhibit temporally varying spatial distributions. Their spatial pattern, however, is governed by nested scales of urban morphology (blocks, streets, properties, etc.). These differences in the source of variability between each component flux suggest a difficulty in the interpretation of the energy balance over urban areas, unless each term is spatially-averaged over the principal morphological units occurring in the area.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Boundary layer meteorology 67 (1994), S. 293-318 
    ISSN: 1573-1472
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The spatial resolution of meteorological observations of scalars (such as concentrations or temperature) and scalar fluxes (e.g., water-vapour flux, sensible heat flux) above inhomogeneous surfaces is in general not known. It is determined by the surface area of influence orsource area of the sensor, which for sensors of quantities that are subject to turbulent diffusion, depends on the flow and turbulence conditions. Functions describing the relationship between the spatial distribution of surface sources (or sinks) and a measured signal at height in the surface layer have been termed thefootprint function or thesource weight function. In this paper, the source area of levelP is defined as the integral of the source weight function over the smallest possible domain comprising the fractionP of the total surface influence reflected in the measured signal. Source area models for scalar concentration and for passive scalar fluxes are presented. The results of the models are presented as characteristic dimensions of theP=50% source areas (i.e., the area responsible for 50% of the surface influence): the maximum source location (i.e., the upwind distance of the surface element with the maximum-weight influence), the near and the far end of the source area, and its maximal lateral extension. These numerical model results are related directly to non-dimensional surface-layer scaling variables by a non-linear least squares method in a parameterized model which provides a user-friendly estimate of the surface area responsible for measured concentrations or fluxes. The source area models presented here allow conclusions to be made about the spatial representativeness and the localness (these terms are defined in the text) of flux and concentration measurements.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...