ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994  (2)
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 99 (1993), S. 538-547 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We have measured the dielectric relaxation time of orientational defects for several H2O and D2O polycrystalline ice samples, in the temperature range 200–270 K, and over the frequency range 0.3–1000 kHz. Results are in good agreement with previous studies, and at T〈240 K, departures from the familiar Arrhenius law have been observed. We show that these deviations from classical rate theory can be well described within the framework of dissipative quantum tunneling (DQT) theory, assuming impurity-generated Bjerrum defects responsible for the observed dielectric relaxation process over the entire temperature range investigated. The temperature regions where quantum tunneling, crossover to thermal hopping, and quantum corrections to classical laws, respectively, prevail are clearly identified, and experimental data have been successfully fitted with theoretical predictions. Particularly significant is the perfect agreement, near the crossover temperature Tc, of all our different samples with a universal scaling law, as predicted by DQT theory, and here experimentally verified for the first time. The crossover temperature Tc, where quantum tunneling and thermal hopping merge, has been found close to 240 and to 220 K for H2O and D2O ices, respectively, thus showing the higher relevance of quantum effects in H2O ice, as expected. It is shown that the dielectric relaxation time of orientational defects for both H2O and D2O ice samples never attains a fully classical behavior, even at their melting temperature. Implications of these findings for the mechanism of migration for orientational defects associated with impurities and water interstitials in ice physics are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1993-07-01
    Print ISSN: 0021-9606
    Electronic ISSN: 1089-7690
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...