ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994  (147)
Collection
Keywords
Publisher
Years
Year
  • 1
  • 2
    Publication Date: 1992-05-01
    Print ISSN: 0031-0182
    Electronic ISSN: 1872-616X
    Topics: Geosciences , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  EPIC3Zeitschrift der Deutschen Geologischen Gesellschaft, 144(2), pp. 330-351
    Publication Date: 2018-08-10
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  EPIC3Carbon cycling in the glacial ocean: Constraints on the ocean's role in Global Change (R. Zahn, M. Kaminski, L. Labeyrie, & T. Pedersen, eds. ), NATO ASI Series, Springer, Berlin, I 17, pp. 555-574
    Publication Date: 2019-07-16
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-16
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  EPIC3The Antarctic paleoenvironment: A perspective on Global Change; Antarctic Research Series, 56, pp. 349-376, ISBN: 0-87590-823-3
    Publication Date: 2019-07-16
    Description: To reveal the late Quaternary paleoenvironmental changes at the Antarctic continental margin, we test a lithostratigraphy, adjusted to a stable isotope record from the eastern Weddell Sea. The stratigraphy is used to produce a stacked sedimentological data set of eleven sediment cores. We derive a general model of glacio marine sedimentation and paleoenvironmental changes at the East Antarctic continental margin during the last two climatic cycles (300 kyr).The sedimentary processes considered include biological productivity, ice-rafting, current transport, and gravitational downslope transport. These processes are controlled by a complex interaction of sea-level changes and paleoceanographic and paleoglacial conditions in response to changes of global climate and local insolation. Sedimentation rates are mainly controlled by ice-rafting which reflects mass balance and behaviour of the Antarctic ice sheet. The sedimentation rates decrease with distance from the continent and from interglacial to glacial. Highest rates occur at the very beginning of interglacials, i.e. of oxygen isotope events 7.5, 5.5, and 1.1, these being up to five times higher than during glacials.The sediments can be classified into five distinct facies and correlated to different paleoenvironments: at glacial terminations (isotope events 8.0, 6.0, and 2.0), the Antarctic cryosphere adjusts to new climatic conditions. The sedimentary processes are controlled by the rise of sea level, the destruction of ice shelves, the retreat of sea-ice and the recommenced feeding of warm North Atlantic Deep Water (NADW) to the Circumpolar Deep Water (CDW). During peak warm interglacial periods (at isotope events 7.5, 7.3, 5.5., and 1.1), the CDW promotes warmer surface waters and thus the retreat of sea-ice which in turn controls the availability of light in surface waters. At distinct climatic thresholds local insolation might also influence sea-ice distribution. Primary productivity and bioturbation increase, the CCD rises and carbonate dissolution occurs in slope sediments also in shallow depth. Ice shelves and coastal polynyas favour the formation of very cold and saline Ice Shelf Water (ISW) which contributes to bottom water formation. During the transition from a peak warm time to a glacial (isotope stages 7.2-7.0, and 5.4-5.0) the superimposition of both intense ice-rafting and reduced bottom currents produces a typical facies which occurs with a distinct lag in the time of response of specific sedimentary processes to climatic change. With the onset of a glacial (at isotope events 7.0 and 5.0) the Antarctic ice sheet expands due to the lowering of sea-level with the extensive glaciations in the northern Hemisphere. Gravitational sediment transport becomes the most active process, and sediment transfer to the deep sea is provided by turbidity currents through canyon systems. During Antarctic glacial maxima (isotope stages between 7.0-6.0, and 5.0-2.0) the strongly reduced input of NADW into the Southern Ocean favours further advances of the ice shelves far beyond the shelf break and the continous formation of sea ice. Below ice shelves and/or closed sea ice coverage contourites are deposited on the slope.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  EPIC3Geological history of the polar oceans, Arctic versus Antarctic (U. Bleil, J. Thiede, eds ), NATO ASI series C308, Kluwer, Dordrecht, pp. 539-572, ISBN: 0-7923-0739-9
    Publication Date: 2019-07-16
    Description: Four cores from the Antarctic continental margin located between 50 and 200 km from the present-day ice shelf edge, were selected for sedimentological and mass spectrometer analysis. The first stable isotope records of the Southern Polar Ocean can be correlated in detail with global isotope stratigraphy. Together with magnetostratigraphic, sedi¬mentological and micropaleontological data, the record provides stratigraphic and paleoceanographic information back to the Jaramillo subchron (910 kyr).Although the isotope values have been altered by diagenetic processes in the sediments, which are poor in carbonate, an interpretation is possible via correlation with the sedimentological parameters. Oxygen isotope data give indications for a meltwater spike at the beginning of interglacials, when large scale melting of parts of the ice shelves took place. The synchronous record of the benthic and planktonic d13C-signals reflect continuous bottom water formation also during glacials.Primary productivity was strictly reduced during glacials due to continuous ice coverage in the Weddell Sea. The climatic improvement at the beginning of an interglacial is associated with peak values in biologic activity lasting for about 15 kyr.During one climatic cycle, mean sedimentation rates at the continental margin decrease with increasing distance from the continent from 5.2 to 1.3 cm/kyr. Maximum sedimentation rates of 25 cm/kyr at the beginning of an interglacial down to 0.6 cm/kyr during glacial periods have been calculated. The rate is mainly controlled by movements of the ice shelf edge and ice rafting.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  EPIC3Proc ODP, Sci Results, 120, pp. 603-630
    Publication Date: 2019-07-16
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-08-10
    Description: Surface sediment samples taken with a vented box corer from the eastern Weddell Sea on four profiles perpendicular to the continental margin have been investigated for their benthic foraminiferal content. The live fauna was differentiated from empty tests comprising the foraminiferal death assemblage. Based on the dead assemblages, potential fossil assemblages were calculated to facilitate the analogy with late Neogene core material. Five distinct live assemblages inhabit the continental margin today. Six dead assemblages and five potential fossil assemblages, respectively, correspond to these biocoenoses.A predominantly calcareous live fauna dominated by Trifarina angulosa is correlated with strong bottom currents and sandy sediments at the shelf break and on the uppermost continental slope. Below this, on the upper slope down to 2000 m water depth, the predominantly calcareous Bulimina aculeata assemblage coincides with the core of warm (〉0°C) Weddell Deep Water and with fine and more organic-rich sediments. These calcareous live assemblages completely change composition during early diagenesis because of calcite dissolution within the uppermost sediment, which depends largely on the grain size distribution of the sediment and the fluxes of organic matter. Therefore, a still calcareous T. angulosa-dominated fossil assemblage indicates the sandy substrates on the shelf break and the upper slope, whereas the deeper slope with hemipelagic calm sedimentation and with high fluxes of organic matter is indicated by Martinottiella nodulosa, the characteristic arenaceous fossil remnant of the former predominantly calcareous live B. aculeata fauna.On a continental terrace between 2500 and 3500 m water depth Cribrostomoides subglobosus dominates the live fauna, but because of rapid disintegration of the empty tests of this agglutinated species a predominantly calcareous fauna characterized by Oridorsalis umbonatus and Epistominella exigua comprises the dead assemblage and the potential fossil assemblage, respectively.On the lower continental slope, between the carbonate lysocline (3500 m) and the carbonate compensation depth (4000 m), tests of Nuttallides umbonifer are the characteristic dead and potential fossil remnants of a former predominantly arenaceous live fauna, which is associated with the lower part of the Antarctic Bottom Water (AABW). This corroborates earlier investigations suggesting a relationship between the carbonate-corrosiveness of water masses and the distribution of N. umbonifer. This is important for inferring paleo-routes and estimates of paleo-production rates of AABW during the Neogene.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-16
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...