ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1992-01-01
    Print ISSN: 0148-0227
    Electronic ISSN: 2156-2202
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1990-10-19
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1994-06-01
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: The superrotation of the Venus atmosphere is a major unanswered problem in planetary science. At cloud-top levels (65-70 km altitude) the atmosphere rotates with a five-day period, corresponding to an equatorial wind speed of 90 m/s. Angular velocity is roughly constant on spherical shells, and decreases linearly with altitude to zero at the surface. The direction of rotation is the same as that of the solid planet, which is retrograde--opposite to the direction of orbital motion, but the 5-day period is short compared to the 243-day spin period of the solid planet or to the mean solar day, which is 117 Earth-days at the surface. The problem with the superrotation is that shearing stresses tend to transfer angular momentum downward, and would slow the atmosphere until it is spinning with the solid planet. Some organized circulation pattern is counteracting the tendency, but the pattern has not been identified. A simple Hadley-type circulation cannot do it because such a circulation is zonally symmetric and Hide's Theorem states that in an axisymmetric circulation an extremum in angular momentum per unit mass M can exist only at the surface. Venus violates the last condition, having a maximum of retrograde M on the equator at 70-80 km altitude. This leaves waves and eddies to maintain the superrotation but the length scales and forcing mechanisms for these motions need to be specified. Possible forcing mechanisms associated with waves, eddies and tides are discussed.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar and Planetary Inst., Papers Presented to the International Colloquium on Venus; p 47-48
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-01-25
    Description: Gains are the spatial weighting of an observation in its neighborhood versus the local values of a model prediction. They are the key to data assimilation, as they are the direct measure of how the data are used to guide the model. As derived in the broad context of data assimilation by Kalman and in the context of meteorology, for example, by Rutherford, the optimal gains are functions of the prediction error covariances between the observation and analysis points. Kalman introduced a very powerful technique that allows one to calculate these optimal gains at the time of each observation. Unfortunately, this technique is both computationally expensive and often numerically unstable for dynamical systems of the magnitude of meteorological models, and thus is unsuited for use in PMIRR data assimilation. However, the optimal gains as calculated by a Kalman filter do reach a steady state for regular observing patterns like that of a satellite. In this steady state, the gains are constants in time, and thus could conceivably be computed off-line. These steady-state Kalman gains (i.e., Wiener gains) would yield optimal performance without the computational burden of true Kalman filtering. We proposed to use this type of constant-in-time Wiener gain for the assimilation of data from PMIRR and Mars Observer.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: Lunar and Planetary Inst., Workshop on Atmospheric Transport on Mars; p 5-6
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-06-08
    Description: A shallow water model with realistic topography and idealized zonal wind forcing is used toinvestigate orographically forced modes in the Martian atmosphere. Locally, the model reproduceswell the climatology at the sites of Viking Lander I and II (VL1 and VL2) as inferred from theViking Lander fall and spring observations. Its variability at those sites is dominated by a 3-sol(Martian solar day) oscillation in the region of VL1 and by a 6-sol oscillation in that of VL2. Theseoscillations are forced by the zonal asymmetries of the Martian mountain field. It is suggested thatthey contribute to the observed variability by reinforcing the baroclinic oscillations with nearbyperiods identified in observational studies. The spatial variability associated with the orographicallyforced oscillations is studied by means of extended empirical orthogonal function analysis. The 3-solVL1 oscillation corresponds to a tropical, eastward-traveling, zonal-wavenumber one pattern...
    Type: Journal of the Atmospheric Sciences
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-28
    Description: We study the effect of the Jovian water cloud on internal gravity waves generated by the impact of comet Shoemaker-Levy 9 (SL9). Vertical structure follows Voyager data to the 1-bar level, a moist adiabat from 1 to 5 bars, and a dry adiabat below the 5-bar level. The waves are trapped in the moist layer and propagate horizontally. Their speed is related to the vertical integral of the Brunt-Vaisala frequency, and varies as the square root of the water abundance (130 m/s for solar composition). The amplitudes are large, e.g., +/- 1 K at a distance of 8000 km for an energy of 10(exp 27) ergs. The circular ripples should be detectable one or two days after the impact in thermal infrared and visible images.
    Keywords: ASTROPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 21; 11; p. 1083-1086
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-12
    Description: The large amplitude oscillations of the shape of Neptune's Great Dark Spot are well reproduced by simple dynamical models of an isolated vortex embedded in a background shear flow. From the time series of the aspect ratio and inclination of the vortex values are estimated for the background shear and the mean vorticity of the Great Dark Spot, and a lower bound is placed on the value of the Rossby deformation radius. These models imply the existence of a planetary-scale zone of deterministic chaotic advection in the atmosphere of Neptune.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Science (ISSN 0036-8075); 249; 1393-139
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-12
    Description: The Vega balloons obtained in situ measurements of pressure, temperature, vertical winds, cloud density, ambient illumination, and the frequency of lightning during their flights in the Venus middle cloud layer. The Vega measurements were used to develop a comprehensive description of the meteorology of the Venus middle cloud layer. The Vega measurements provide the following picture: large horizontal temperature gradients near the equator, vigorous convection, and weather conditions that can change dramatically on time scales as short as one hour.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Advances in Space Research (ISSN 0273-1177); 10; 5 19
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-27
    Description: The Mars Observer camera (MOC) is a three-component system (one narrow-angle and two wide-angle cameras) designed to take high spatial resolution pictures of the surface of Mars and to obtain lower spatial resolution, synoptic coverage of the planet's surface and atmosphere. The cameras are based on the 'push broom' technique; that is, they do not take 'frames' but rather build pictures, one line at a time, as the spacecraft moves around the planet in its orbit. MOC is primarily a telescope for taking extremely high resolution pictures of selected locations on Mars. Using the narrow-angle camera, areas ranging from 2.8 km x 2.8 km to 2.8 km x 25.2 km (depending on available internal digital buffer memory) can be photographed at about 1.4 m/pixel. Additionally, lower-resolution pictures (to a lowest resolution of about 11 m/pixel) can be acquired by pixel averaging; these images can be much longer, ranging up to 2.8 x 500 km at 11 m/pixel. High-resolution data will be used to study sediments and sedimentary processes, polar processes and deposits, volcanism, and other geologic/geomorphic processes.
    Keywords: SPACECRAFT INSTRUMENTATION
    Type: Journal of Geophysical Research (ISSN 0148-0227); 97; E5 M
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...