ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994  (2)
Collection
Years
Year
  • 1
    Publication Date: 2019-07-18
    Description: Burning to clear land for crops and to destroy pests is an integral and largely unavoidable part of tropical agriculture. It is easy to note but difficult to quantify using remote sensing. This report describes our efforts to integrate remotely sensed data into our computer model of tropical chemical trace-gas emissions, weather, and reaction chemistry (using the MM5 mesoscale model and our own Global-Regional Atmospheric Chemistry Simulator). The effects of burning over the continents of Africa and South America have been noticed in observations from several satellites. Smoke plumes hundreds of kilometers long may be seen individually, or may merge into a large smoke pall over thousands of kilometers of these continents. These features are related to intense pollution in the much more confined regions with heavy burning. These emissions also translocate nitrogen thousands of kilometers in the tropical ecosystems, with large fixed-nitrogen losses balanced partially by locally intense fertilization downwind, where nitric acid is rained out. At a much larger scale, various satellite measurements have indicated the escape of carbon monoxide and ozone into large filaments which extend across the Tropical and Southern Atlantic Ocean. Our work relates the source emissions, estimated in part from remote sensing, in part from conventional surface reports, to the concentrations of these gases over these intercontinental regions. We will mention work in progress to use meteorological satellite data (AVHRR, GOES, and Meteosat) to estimate the surface temperature and extent and height of clouds, and explain why these uses are so important in our computer simulations of global biogeochemistry. We will compare our simulations and interpretation of remote observations to the international cooperation involving Brazil, South Africa, and the USA in the TRACE-A (Transport and Atmospheric Chemistry near the Equator - Atlantic) and SAFARI (Southern Africa Fire Atmosphere Research Initiative) and remote-sensing /aircraft/ecosystem observational campaigns.
    Keywords: Environment Pollution
    Type: ECORIO 1994; Unknown
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-18
    Description: Biomass burnin is a common force in much of the developing tropical world where it has wide-ranging environmental impacts. Fire is a component of tropical deforestation and is 0 p often used to clear broad expanses of land for shifting agriculture and cattle ranching. Frequent burning in the tropical savannas is a distinct problem from that of primary forest. In Brazil, most of the burning occurs in the cerrado which occupies approximately 1,800,000 km2, primarily on the great plateau in central Brazil. Wildland and agricultural fires are dramatic sources of regional air pollution in central Brazil. Biomass burning is an important source of a large number of trace gases including greenhouse gases and other chemically active species. Knowledge of trace gas emissions from biomass burning in Brazil is limited by a number of factors, most notably relative emission factors for gases from specific fire types/fuels and accurate estimates of temporal and spatial distribution and extent of fire activity. Estimates of trace gas emissions during September 1992 will be presented that incorporates a digital map of vegetation classes, pyrogenic emission factors calculated from ground and aircraft missions, and Instituto Nacional de Pesquisas Espaciais (INPE) fire products derived from Advanced Very High Resolution Radiometer (AVHRR) data. The regional emissions calculated from National Oceanographic and Atmospheric Administration (NOAA) AVHRR estimates of fire activity will provide an independent estimate for comparison with results obtained by the National Aeronautics and Space Administration (NASA) Transport and Atmospheric Chemistry Near the Equator - Atlantic (TRACE-A) experiments.
    Keywords: Environment Pollution
    Type: International Symposium on Resource and Environmental Monitoring; Sep 26, 1994 - Sep 30, 1994; Rio de Janeiro; Brazil
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...