ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994  (10)
  • 1
    Publication Date: 1993-11-01
    Print ISSN: 0925-4773
    Electronic ISSN: 1872-6356
    Topics: Biology
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1993-01-01
    Print ISSN: 0148-0227
    Electronic ISSN: 2156-2202
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1994-05-15
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-08-31
    Description: Carbonates may have been a common target for large impacts on the Earth and possible related CO2 outgassing would have important consequences for the composition of the atmosphere. To estimate volatile release during such impacts, isotopic ratios (C-13/C-12 and O-18/O-16) were determined on highly shocked carbonate samples in combination with SEM and analytical transmission electron microscopy (ATEM) investigations. The study was performed on both naturally and experimentally shocked rocks, i.e. 50-60 GPa shocked limestone-dolomite fragments from the Haughton impact crater (Canada), and carbonates shocked in shock recovery experiments. For the experiments, unshocked carbonates consisting of mixture of dolomite and calcite from the Haughton area were used. Naturally shocked samples were collected in the polymict breccia near the center of the Haughton crater.
    Keywords: INORGANIC AND PHYSICAL CHEMISTRY
    Type: Lunar and Planetary Inst., Twenty-Fourth Lunar and Planetary Science Conference. Part 2: G-M; p 933-934
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-08-31
    Description: Differently oriented single crystal quartz was shocked experimentally at pressures of 20 to 32 GPa and pre-shock temperatures up to 630 C. Based on this systematic investigation, we can demonstrate that the orientation of planar deformation features in quartz is not only dependent on shock pressure but also on pre-shock temperature and shock direction. Moreover, the orientation of Planar Deformation Features (PDF's) is strongly influenced by the set-up in recovery experiments. PDF's in quartz are defined as optically recognizable, planar microstructures diagnostically produced by shock compression. PDF's differ from all kinds of microstructures found in volcanic environment and therefore, their presence is a primary criterion for recognizing impact craters and ejecta layers such as the K/T boundary. Because experiments have shown a pressure dependence of the orientation of PDF's, this property is used extensively for shock wave barometry in natural impact sites. However, the unreflected application of experimental results neglects that parameters such as pre-shock temperature, shock direction, or the experimental arrangement may influence the spatial distribution of PDF's. In order to test this assumption, shock experiments on single crystal quartz at pre-shock temperatures of 20, 275, 540, and 630 C, and with shock directions (1010) and (0001) were performed. Most of the recovery experiments were carried out by using a reverberation technique, whereas in only one experiment a single shock was produced (impedance method). In the former case 0.5 mm thin discs of single crystal quartz were used, in the latter a 15 mm thick cylinder. The orientation of PDF's was measured by means of a conventional universal stage and the results are given. Effects of the experimentation technique can be derived showing the orientation of PDF's in quartz shocked at 27.5 GPa. In comparison to the well defined peaks at (1012) found in samples from reverberation experiments, the impedance matching technique causes PDF's with a broad distribution pattern and indistinct maxima. Our results have serious implications for shock-wave barometry in nature: the existing classification scheme which relates PDF orientation exclusively to shock pressure is no longer applicable. In consequence more experimental data is needed.
    Keywords: SOLID-STATE PHYSICS
    Type: Lunar and Planetary Inst., Twenty-Fourth Lunar and Planetary Science Conference. Part 2: G-M; p 849-850
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-08-31
    Description: One major objective of our Sudbury project was to define origin and age of the huge breccia units below and above the Sudbury Igneous Complex (SIC). The heterolithic Footwall Breccia (FB) represents a part of the uplifted crater floor. It contains subrounded fragments up to several meters in size and lithic fragments with shock features (greater than 10 GPa) embedded into a fine- to medium-grained matrix. Epsilon(sub Nd)-epsilon(sub Sr) relationships point to almost exclusively parautochthonous precursor lithologies. The different textures of the matrix reflect the metamorphic history of the breccia layer; thermal annealing by the overlying hot impact melt sheet (SIC) at temperatures greater than 1000 C resulted in melting of the fine crushed material, followed by an episode of metasomatic K-feldspar growth and, finally, formation of low-grade minerals such as actinolite and chlorite. Isotope relationships in the Onaping breccias (Gray and Green Member) are much more complex. All attempts to date the breccia formation failed: Zircons are entirely derived from country rocks and lack the pronounced Pb loss caused by the heat of the slowly cooling impact melt sheet (SIC). Rb-Sr techniques using either lithic fragments of different shock stages or the thin slab method, set time limits for the apparently pervasive alkali mobility in these suevitic breccias. The data array and the intercept in the plots point to a major Rb-Sr fractionation around 1.54 Ga ago. This model age is in the same range as the age obtained for the metasomatic matrix of the FB. Rb-Sr dating of a shock event in impact-related breccias seems to be possible only if their matrix had suffered total melting by the hot melt sheet (FB) or if they contain a high fraction of impact melt (suevitic Onaping breccias), whereas the degree of shock metamorphism in rock or lithic fragments plays a minor role. In the Sudbury case, however, the impact melt in the seuvitic breccias is devitrified and recrystallized, which changed Rb/Sr ratios quite drastically. Therefore, the Onaping breccias give only age limits for alteration and low-grade metamorphism. The Sm-Nd system was not reset during the Sudbury event; clasts as well as the matrix in the FB and in the Onaping breccias show preimpact 'Archean' Nd isotope signatures.
    Keywords: GEOPHYSICS
    Type: Lunar and Planetary Inst., International Conference on Large Meteorite Impacts and Planetary Evolution; p 11-12
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-08-31
    Description: Within the Sudbury Project of the University of Muenster and the Ontario Geological Survey special emphasis was put on the breccia formations exposed at the Sudbury structure (SS) because of their crucial role for the impact hypothesis. They were mapped and sampled in selected areas of the north, east, and south ranges of the SS. The relative stratigraphic positions of these units are summarized. Selected samples were analyzed by optical microscopy, SEM, microprobe, XRF and INAA, Rb-Sr and SM-Nd-isotope geochemistry, and carbon isotope analysis. The results of petrographic and chemical analysis for those stratigraphic units that were considered the main structural elements of a large impact basin are summarized.
    Keywords: GEOPHYSICS
    Type: Lunar and Planetary Inst., International Conference on Large Meteorite Impacts and Planetary Evolution; p 71-72
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-08-31
    Description: Shock metamorphic features are the prime indicators for recognizing impact phenomena on Earth and other planetary bodies. Although the pressure dependence of shock features is well known, information about the influence of the preshock temperature is almost lacking. Especially in the case of large-scale impacts like Sudbury, it is expected that deep-seated crustal rocks were subjected to shock at elevated temperatures. Therefore, we continued to perform shock experiments at elevated temperatures on less than 0.5-mm thin disks of single crystal quartz cut parallel to the (1010) face. All recovered quartz samples were investigated by universal stage, spindle stage, and a newly developed density gradient technique. Errors of refractive index and density measurements are +/- 0.0005 and +/- 0.002 g/cu cm respectively. Our investigations indicate that shock metamorphic features are strongly dependent on the preshock temperature. This statement has far-reaching implications with respect to shock wave barometry that is based on data from recovery experiments at room temperature. These datasets might be applicable only to low-temperature target rocks. Moreover, this study demonstrates that shock recovery experiments are definitely required for understanding the complete pressure-temperature regime of shock metamorphism on planetary bodies.
    Keywords: GEOPHYSICS
    Type: Lunar and Planetary Inst., International Conference on Large Meteorite Impacts and Planetary Evolution; p 45-46
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-08-31
    Description: Within the framework of the Sudbury project a considerable number of Sr-Nd isotope analyses were carried out on petrographically well-defined samples of different breccia units. Together with isotope data from the literature these data are reviewed under the aspect of a self-consistent impact model. The crucial point of this model is that the Sudbury Igneous Complex (SIC) is interpreted as a differentiated impact melt sheet without any need for an endogenic 'magmatic' component such as 'impact-triggered' magmatism or 'partial' impact melting of the crust and mixing with a mantle-derived magma.
    Keywords: GEOPHYSICS
    Type: Lunar and Planetary Inst., International Conference on Large Meteorite Impacts and Planetary Evolution; p 21-22
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-08-31
    Description: In 1984 the Ontario Geological Survey initiated a research project on the Sudbury structure (SS) in cooperation with the University of Muenster. The project included field mapping (1984-1989) and petrographic, chemical, and isotope analyses of the major stratigraphic units of the SS. Four diploma theses and four doctoral theses were performed during the project (1984-1992). Specific results of the various investigations are reported. Selected areas of the SS were mapped and sampled: Footwall rocks; Footwall breccia and parts of the sublayer and lower section of the Sudbury Igneous Complex (SIC); Onaping Formation and the upper section of the SIC; and Sudbury breccia and adjacent Footwall rocks along extended profiles up to 55 km from the SIC. All these stratigraphic units of the SS were studied in substantial detail by previous workers. The most important characteristic of the previous research is that it was based either on a volcanic model or on a mixed volcanic-impact model for the origin of the SS. The present project was clearly directed toward a test of the impact origin of the SS without invoking an endogenic component. In general, our results confirm the most widely accepted stratigraphic division of the SS. However, our interpretation of some of the major stratigraphic units is different from most views expressed. The stratigraphy of the SS and its new interpretation is given as a basis for discussion.
    Keywords: GEOPHYSICS
    Type: Lunar and Planetary Inst., International Conference on Large Meteorite Impacts and Planetary Evolution; p 5-6
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...