ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (8)
  • 1990-1994  (8)
Collection
Years
Year
  • 1
    Publication Date: 2011-08-19
    Description: An experimental investigation was conducted to determine the degree to which the thermal contact conductance at the interface of contacting Aluminum 6061 T6 surfaces could be enhanced through the use of vapor-deposited metallic coatings. Three different coating materials (lead, tin, and indium) were evaluated using four different thicknesses for each coating material. The results verified the existence of an optimum coating thickness, shown to be in the range of 2.0 to 3.0 microns for indium, 1.5 to 2.5 microns for lead, and 0.2 to 0.5 microns for tin. The enhancement factors for thermal contact conductance were found to be on the order of 700, 400, and 50 percent, respectively. Based upon the experimental data, the hardness of the coating materials appears to be the most significant parameter in ranking the substrate and coating material combinations; however, additional experimental data are needed to substantiate this hypothesis. Finally, it was apparent that the thermal contact conductance enhancement effect was greatest at low contact pressures and decreased significantly with increases in the contact pressure.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: ASME, Transactions, Journal of Heat Transfer (ISSN 0022-1481); 112; 864-871
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: Large scale dynamic ocean topography and its variations were observed using ERS-1 radar altimeter measurements. The altimeter measurements analyzed are primarily from the ESA ocean product (OPR02) and from the Interim Geophysical Data Records (IGDR) generated by NOAA from the fast delivery (FD) data during the ERS-1 35 day repeat orbit phase. The precise orbits used for the dynamic topography solution are computed using dual satellite crossover measurements from ERS-1 and TOPEX (Topology Ocean Experiment)/Poseidon (T/P) as additional tracking data, and using improved models and constants which are consistent with T/P. Analysis of the ERS-1 dynamic topography solution indicates agreement with the T/P solution at the 5 cm root mean square level, with regional differences as large as 15 cm tide gauges at the 8 to 9 cm level. There are differences between the ERS-1 OPR02 and IGDR determined dynamic topography solutions on the order of 5 cm root mean square. Mesoscale oceanic variability time series obtained using collinear analysis of the ERS-1 altimeter data show good qualitative agreement when compared with the T/P results.
    Keywords: OCEANOGRAPHY
    Type: ESA, Proceedings of the Second ERS-1 Symposium on Space at the Service of Our Environment, Volume 1; p 489-494
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: The freeze/thaw characteristics of a copper/water heat pipe of rectangular cross section were investigated experimentally to determine the effect of variations in the amount of non-condensible gases (NCG) present. The transient internal temperature profiles in both the liquid and vapor channels are presented along with contours of the frozen fluid configuration obtained through visual observation. Several interesting phenomena were observed including total blockage of the vapor channel by a solid plug, evaporator dryout during restart, and freezing blowby. In addition, the restart characteristics are shown to be strongly dependent upon the shutdown procedure used prior to freezing, indicating that accurate prediction of the startup or restart characteristics requires a complete thermal history. Finally, the experimental results indicate that the freeze/thaw characteristics of room temperature heat pipes may be significantly different from those occurring in higher temperature, liquid metal heat pipes due to differences in the vapor pressures in the frozen condition.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AIAA PAPER 91-1402
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: An attempt is made to determine how a heat pipe freezes under various low load and/or no load conditions in both one-g and micro-g environments. Also of interest are the mechanisms that can be used to restart the heat pipe after freezing has occurred. Particular attention is given to step function power reductions and the resulting distribution of the working fluid after freezing has occurred and the effect of noncondensible gases on the frozen configuration and the restart characteristics.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: AIAA PAPER 91-0365
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-28
    Description: An experimental investigation designed to evaluate and better define the overall characteristics of freezing blowby in a copper/water heat pipe was conducted. The results from various rates of restart heat addition and channel blockage, indicate that upon breakthrough the depressurization of the evaporator may result in an effective heat transport capacity far in excess of the steady-state transport limit. The resulting transient conditions imposed on the heat pipe by the effective increased heat transport capacity can cause a loss of liquid in the evaporator and potential dryout. Evidence is presented which indicates that in order to prevent either temporary or permanent dryout, sufficient liquid inventory must be present in the evaporator wicking structure to accommodate the increased transient thermal load and allow sufficient time for the capillary wicking structure to reprime.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AIAA PAPER 92-2909
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: A combined analytical and numerical model for the analysis of the deprime and reprime/rewetting characteristics of two high-capacity external artery heat pipe designs undergoing externally induced accelerations was developed using several previously derived analytical expressions. Three distinct phases of the deprime and reprime/rewetting process were analyzed: (1) the effect of longitudinal accelerations on the depriming, (2) the time required for repriming of the liquid artery once the longitudinal acceleration has been terminated, and (3) the rewetting characteristics of the circumferential wall grooves. Combining the three processes, a technique was developed allowing the prediction of the effect of external acceleration on the characteristics of the external artery heat pipes. The predictions made with this technique agreed well with the microgravity flight results.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AIAA PAPER 93-0282 , ; 11 p.|AIAA, Aerospace Sciences Meeting and Exhibit; Jan 11, 1993 - Jan 14, 1993; Reno, NV; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-27
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Journal of Thermophysics and Heat Transfer (ISSN 0887-8722); 7; 1; p. 127-132.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-27
    Description: A two-dimensional finite element model was used to determine the freeze/thaw characteristics of an external artery heat pipe. During startup, the working fluid, which was located in the liquid channel and the circumferential wall grooves, experienced a phase transformation from a solid to a liquid state. The transient heat conduction equations with moving interfacial conditions were solved using the appropriate initial boundary conditions. The modelling results include the cross-sectional temperature distribution and the interfacial or melt front position as a function of time. A fixed grid approach was adopted in the model for the phase-change process during thawing of frozen working fluid. The interfacial position between the liquid and solid regions was found by balancing the latent heat caused by interfacial movement with the heat addition or extraction at the related grid points.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AIAA PAPER 93-2739 , ; 6 p.|AIAA, Thermophysics Conference; Jul 06, 1993 - Jul 09, 1993; Orlando, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...