ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (3)
  • 1990-1994  (3)
Collection
Years
Year
  • 1
    Publication Date: 2011-08-24
    Description: The Galileo ultraviolet spectrometer experiment uses data obtained by the Ultraviolet Spectrometer (UVS) mounted on the pointed orbiter scan platform and from the Extreme Ultraviolet Spectrometer (EUVS) mounted on the spinning part of the orbiter with the field of view perpendicular to the spin axis. The UVS is a Ebert-Fastie design that covers the range 113-432 nm with a wavelength resolution of 0.7 nm below 190 and 1.3 nm at longer wavelengths. The UVS spatial resolution is 0.4 deg x 0.1 deg for illuminated disk observations and 1 deg x 0.1 deg for limb geometries. The EUVS is a Voyager design objective grating spectrometer, modified to cover the wavelength range from 54 to 128 nm with wavelength resolution 3.5 nm for extended sources and 1.5 nm for point sources and spatial resolution of 0.87 deg x 0.17 deg. The EUVS instrument will follow up on the many Voyager UVS discoveries, particularly the sulfur and oxygen ion emissions in the Io torus and molecular and atomic hydrogen auroral and airglow emissions from Jupiter. The UVS will obtain spectra of emission, absorption, and scattering features in the unexplored, by spacecraft, 170-432 nm wavelength region. The UVS and EUVS instruments will provide a powerful instrument complement to investigate volatile escape and surface composition of the Galilean satellites, the Io plasma torus, micro- and macro-properties of the Jupiter clouds, and the composition structure and evolution of the Jupiter upper atmosphere.
    Keywords: SPACECRAFT INSTRUMENTATION
    Type: Space Science Reviews (ISSN 0038-6308); 60; 1-4,
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-19
    Description: The Galileo Extreme Ultraviolet Spectrometer obtained a spectrum of Venus atmospheric emissions in the 55.0- to 125.0-nm wavelength region. Emissions of helium (58.4 nm), ionized atomic oxygen (83.4 nm), and atomic hydrogen (121.6 nm), as well as a blended spectral feature of atomic hydrogen (Lyman-beta) and atomic oxygen (102.5 nm), were observed at 3.5-nm resolution. During the Galileo spacecraft cruise from Venus to earth, Lyman-alpha emission from solar system atomic hydrogen (121.6 nm) was measured. The dominant source of the Lyman-alpha emission is atomic hydrogen from the interstellar medium. A model of Galileo observations at solar maximum indicates a decrease in the solar Lyman-alpha flux near the solar poles. A strong day-to-day variation also occurs with the 27-day periodicity of the rotation of the sun.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Science (ISSN 0036-8075); 253; 1548-155
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-27
    Description: Solar Ly-alpha latitude variation at solar maximum is examined on the basis of interplanetary Ly-alpha observations made during the Galileo and Pioneer Venus UV spectrometer experiments. A comparison is made of the latitude variation of the interplanetary (IP) Ly-alpha signal in 1986 at solar minimum from Pioneer Venus and in 1990 at solar maximum from Galileo. The Galileo EUV spectrometer shows that a large enhancement of the IP Ly-alpha emission occurred over the intervening four years near the solar equator. An IP Ly-alpha model is developed which considers the latitude variation of the solar Ly-alpha flux. The model fit to the data shows a 25-percent decrease of the full disk solar Ly-alpha flux from solar equator to solar pole in 1990. A detailed study of the Galileo IP Ly-alpha observations on day-of-year 190, 193, 197, and 200 in 1990 reveals that large variations occur in response to the 27-d solar variation. Analysis of these data shows that a maximum variation of 20 percent can be expected in the IP Ly-alpha upwind intensity over this 27-d period.
    Keywords: SOLAR PHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 394; 1, Ju; 363-377
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...