ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-05
    Description: A coherent anti-Stokes Raman scattering (CARS) system has been hardened for use in a NASA Langley supersonic combustion test cell. The system can obtain temperature cross sections of the flow at three locations. The system is environmentally protected and remotely operated. Measurements were made in a scram-jet combustor model consisting of a rear- ward-facing step, followed by an expansion duct. The duct is nominally 4 feet in length. The free stream conditions were Mach 2, with static pressure which ranged from 0.8 to 1.9 atm, and a static temperature of approximately 800K. Three vertical slots were machined into each side of the duct to allow optical access. The CARS system utilized a planar BOXCARS beam arrangement. This arrangement allowed the laser beams to pass through the vertical slots in the tunnel. Translation stages were utilized to move the focussing volume within the tunnel. These stages allowed complete cross sections to be obtained at each slot location. A fiber optic carried the signal to a remotely located monochrometer and reticon detector.Data for two different flow conditions were taken at each of the three slot locations. These two conditions provided a comparison between reacting and non-reacting mixing of injected hydrogen fuel with the combustion heated supersonic stream.
    Keywords: Spacecraft Propulsion and Power
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: The Solid Rocket Motor Air Flow Facility (SAF) at NASA Marshall Space Flight Center was used to characterize the flow in the critical aft end and nozzle of a solid propellant rocket motor (SRM) as part of the design phase of development. The SAF is a high pressure, blowdown facility which supplies a controlled flow of air to a subscale model of the internal port and nozzle of a SRM to enable measurement and evaluation of the flow field and surface pressure distributions. The ASRM Aft Section/Nozzle Model is an 8 percent scale model of the 19 second burn time aft port geometry and nozzle of the Advanced Solid Rocket Motor, the now canceled new generation space Shuttle Booster. It has the capability to simulate fixed nozzle gimbal angles of 0, 4, and 8 degrees. The model was tested at full scale motor Reynolds Numbers with extensive surface pressure instrumentation to enable detailed mapping of the surface pressure distributions over the nozzle interior surface, the exterior surface of the nozzle nose and the surface of the simulated propellant grain in the aft motor port. A mathematical analysis and associated numerical procedure were developed to integrate the measured surface pressure distributions to determine the lateral and axial forces on the moveable section of the nozzle, the effective model thrust and the effective aerodynamic thrust vector (as opposed to the geometric nozzle gimbal angle). The nozzle lateral and axial aerodynamic loads and moments about the pivot point are required for design purposes and require complex, three dimensional flow analyses. The alignment of the thrust vector with the nozzle geometric centerline is also a design requirement requiring three dimensional analyses which were supported by this experimental program. The model was tested with all three gimbal angles at three pressure levels to determine Reynolds number effects and reproducibility. This program was successful in demonstrating that a measured surface pressure distribution could be integrated to determine the lateral and axial loads, moments and thrust vector alignment for the scaled model of a large space booster nozzle. Numerical results were provided which are scaleable to the full scale rocket motor and can be used as benchmark data for 3-D CFD analyses.
    Keywords: Spacecraft Propulsion and Power
    Type: NASA-TM-112087 , NAS 1.15:112087 , AIAA Paper 94-3292 , Joint Propulsion Conference; Jun 27, 1994 - Jun 29, 1994; Indianapolis, IN; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The recent NASA Access to Space study examined future Earth to orbit (ETO) transportation needs and fleets out to 2030. The baseline in the option 3 assessment was a single stage to orbit (SSTO) vehicle. A study was conducted to assess the use of new advanced low cost O2/H2 engines for this SSTO application. The study defined baseline configurations and ground rules and defined six engine cycles to explore engine performance. The cycles included an open cycle, and a series of closed cycles with varying abilities to extract energy from the propellants to power he turbomachinery. The cycles thus varied in the maximum chamber pressure they could reach and in their weights at any given chamber pressure. The weight of each cycle was calculated for two technology levels versus chamber pressure up to the power limit of the cycle. The performance in the SSTO mission was then modeled using the resulting engine weights and specific impulse performance using the Access to Space option 3 vehicle. The results showed that new O2/H2 engines are viable and competitive candidates for the SSTO application using chamber pressures of 4,000 psi.
    Keywords: Spacecraft Propulsion and Power
    Type: NASA-TM-111897 , NAS 1.15:111897 , AIAA Paper 94-3317 , Joint Propulsion; Jun 27, 1994 - Jun 29, 1994; Indianapolis, IN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...