ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Nutrient use efficiency  (1)
  • 1990-1994  (1)
Collection
Publisher
Years
  • 1990-1994  (1)
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 84 (1990), S. 391-397 
    ISSN: 1432-1939
    Keywords: Nutrient use efficiency ; Mean residence time of nutrients ; Nutrient productivity ; Nutrient resorption ; Litter production
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The nutrient (N, P) use efficiency (NUE: g g−1 nutrient), measured for the entire plant, of field populations of the evergreen shrubs Erica tetralix (in a wet heathland) and Calluna vulgaris (in a dry heathland) and the deciduous grass Molinia caerulea (both in a wet and a dry heathland) was compared. Erica and Calluna are crowded out by Molinia when nutrient availability increases. NUE was measured as the product of the mean residence time of a unit of nutrient in the population (MRT: yr) and nutrient productivity (A: annual productivity per unit of nutrient in the population, g g−1 nutrient yr−1. It was hypothesized that 1) in low-nutrient habitats selection is on features leading to a high MRT, whereas in high-nutrient habitats selection is on features leading to a high A; and that 2) due to evolutionary trade-offs plants cannot combine genotypically determined features which maximize both components of NUE. Both total productivity and litter production of the Molinia populations exceeded that of both evergreens about three-fold. Nitrogen and phosphorus resorption from senescing shoots was much lower in the evergreens compared with Molinia. In a split-root experiment no nutrient resorption from senescing roots was observed. Nutrient concentrations in the litter were equal for all species, except for litter P-concentration of Molinia at the wet site. Both Erica and Calluna had a long mean residence time of both nitrogen and phosphorus and a low nitrogen and phosphorus productivity. The Molinia populations showed a shorter mean residence time of N and P and a higher N- and P-productivity. These patterns resulted in an equal nitrogen use efficiency and an almost equal phosphorus use efficiency for the species under study. However, when only aboveground NUE was considered the Molinia populations had a much higher NUE than the evergreens. The results are consistent with the hypotheses. Thus, the low potential growth rate of species from low-nutrient habitats is probably the consequence of their nutrient conserving strategy rather than a feature on which direct selection takes place in these habitats.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...