ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-01-25
    Description: Subduction zones are presently the dominant sites on Earth for recycling and mass transfer between the crust and mantle; they feed hydrated basaltic oceanic crust into the upper mantle, where dehydration reactions release aqueous fluids and/or hydrous melts. The loci for fluid and/or melt generation will be determined by the intersection of dehydration reaction boundaries of primary hydrous minerals within the subducted lithosphere with slab geotherms. For metabasalt of the oceanic crust, amphibole is the dominant hydrous mineral. The dehydration melting solidus, vapor-absent melting phase relationships; and amphibole-out phase boundary for a number of natural metabasalts have been determined experimentally, and the pressure-temperature conditions of each of these appear to be dependent on bulk composition. Whether or not the dehydration of amphibole is a fluid-generating or partial melting reaction depends on a number of factors specific to a given subduction zone, such as age and thickness of the subducting oceanic lithosphere, the rate of convergence, and the maturity of the subduction zone. In general, subduction of young, hot oceanic lithosphere will result in partial melting of metabasalt of the oceanic crust within the garnet stability field; these melts are characteristically high-Al2O3 trondhjemites, tonalites and dacites. The presence of residual garnet during partial melting imparts a distinctive trace element signature (e.g., high La/Yb, high Sr/Y and Cr/Y combined with low Cr and Y contents relative to demonstrably mantle-derived arc magmas). Water in eclogitized, subducted basalt of the oceanic crust is therefore strongly partitioned into melts generated below about 3.5 GPa in 'hot' subduction zones. Although phase equilibria experiments relevant to 'cold' subduction of hydrated natural basalts are underway in a number of high-pressure laboratories, little is known with respect to the stability of more exotic hydrous minerals (e.g., ellenbergite) and the potential for oceanic crust (including metasediments) to transport water deeper into the mantle.
    Keywords: GEOPHYSICS
    Type: Lunar and Planetary Inst., Conference on Deep Earth and Planetary Volatiles; p 39
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: The effects of the permanent tidal effects of the Sun and Moon with specific applications to satellite altimeter data reduction are reviewed in the context of a consistent definition of geoid undulations. Three situations are applicable not only for altimeter reduction and geoid definition, but also for the second degree zonal harmonic of the geopotential and the equatorial radius. A recommendation is made that sea surface heights and geoid undulations placed on the Topex/Poseidon geophysical data record should be referred to the mean Earth case (i.e., with the permanent effects of the Sun and Moon included). Numerical constants for a number of parameters, including a flattening and geoid geopotential, are included.
    Keywords: GEOPHYSICS
    Type: NASA-TM-100775 , NAS 1.15:100775 , REPT-91B00049
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: The computation is described of a geopotential model to deg 360, a sea surface topography model to deg 10/15, and adjusted Geosat orbits for the first year of the exact repeat mission (ERM). This study started from the GEM-T2 potential coefficient model and it's error covariance matrix and Geosat orbits (for 22 ERMs) computed by Haines et al. using the GEM-T2 model. The first step followed the general procedures which use a radial orbit error theory originally developed by English. The Geosat data was processed to find corrections to the a priori geopotential model, corrections to a radial orbit error model for 76 Geosat arcs, and coefficients of a harmonic representation of the sea surface topography. The second stage of the analysis took place by doing a combination of the GEM-T2 coefficients with 30 deg gravity data derived from surface gravity data and anomalies obtained from altimeter data. The analysis has shown how a high degree spherical harmonic model can be determined combining the best aspects of two different analysis techniques. The error analysis was described that has led to the accuracy estimates for all the coefficients to deg 360. Significant work is needed to improve the modeling effort.
    Keywords: GEOPHYSICS
    Type: NASA-CR-188628 , NAS 1.26:188628 , OSU-410
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: In June 1986 a 1 x 1 deg/mean free-air anomaly data file containing 48955 anomalies was completed. In August 1986 a 30 x 30 min mean free-air anomaly file was defined containing 31787 values. For the past three years data has been collected to upgrade these mean anomaly files. The primary emphasis was the collection of data to be used for the estimation of 30 min means anomalies in land areas. The emphasis on land areas was due to the anticipated use of 30 min anomalies derived from satellite altimeter data in the ocean areas. There were 10 data sources in the August 1986 file. Twenty-eight sources were added based on the collection of both point and mean anomalies from a number of individuals and organizations. A preliminary 30 min file was constructed from the 38 data sources. This file was used to calculate 1 x 1 deg mean anomalies. This 1 x 1 deg file was merged with a 1 x 1 deg file which was a merger of the June 1986 file plus a 1 x 1 deg file made available by DMA Aerospace Center. Certain bad 30 min anomalies were identified and deleted from the preliminary 30 min file leading to the final 30 min file (the July 1989 30 min file) with 66990 anomalies and their accuracy. These anomalies were used to again compute 1 x 1 deg anomalies which were merged with the previous June 86 DMAAC data file. The final 1 x 1 deg mean anomaly file (the July 89 1 x 1 deg data base) contained 50793 anomalies and their accuracy. The anomaly data files were significantly improved over the prior data sets in the following geographic regions: Africa, Scandinavia, Canada, United States, Mexico, Central and South America. Substantial land areas remain where there is little or no available data.
    Keywords: GEOPHYSICS
    Type: NASA-CR-186475 , NAS 1.26:186475 , REPT-403
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-28
    Description: Spherical harmonic expansions to degree 360 have been developed that combine satellite potential coefficient information, terrestrial gravity data, satellite altimeter information as a direct tracking data type and topographic information. These models define improved representations of the Earth's gravitational potential beyond that available from just satellite or terrestrial data. The development of the degree 360 models, however, does not imply a uniform accuracy in the determination of the gravity field as numerous geographic areas are devoid of terrestrial data or the resolution of such data is limited to, for example, 100 km. This paper will consider theoretical and numerical questions related to the combination of the various data types. Various models of the combination process are discussed with a discussion of various correction terms for the different models. Various sources of gravity data will be described. The new OSU91 360 model will be discussed with comparisons made to previous 360 models and to other potential coefficient models that are complete to degree 50. Future directions in high degree potential coefficient models will be discussed.
    Keywords: GEOPHYSICS
    Type: In: From Mars to Greenland: Charting gravity with space and airborne instruments - Fields, tides, methods, results (A93-55951 24-46); p. 93-106.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: The studies carried out under this grant fell into two broad areas. The first area was the analysis of surface gravity data with the ultimate goal of providing normal equations that could be used in combination with normal equations from the analysis of satellite orbit perturbations to obtain an optimal estimate of the gravitational potential coefficients of the Earth. The second main research activity was the estimation of gravity anomalies in ocean areas from satellite altimeter data. Such anomalies could enable the improved calibration of potential coefficient models derived solely from the analysis of orbital perturbation information. The studies in these two areas are discussed.
    Keywords: GEOPHYSICS
    Type: NASA-CR-190478 , NAS 1.26:190478
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: The determination of the Earth's gravitational potential can be done through the analysis of satellite perturbations, the analysis of surface gravity data, or both. The combination of the two data types yields a solution that combines the strength of each method: the longer wavelength strength in the satellite analysis with the better high frequency information from surface gravity data. Since 1972, Ohio State has carried out activities that have provided surface gravity data to a number of organizations who have developed combination potential coefficient models that describe the Earth's gravitational potential.
    Keywords: GEOPHYSICS
    Type: NASA-CR-190236 , NAS 1.26:190236
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-12
    Description: The radial error model of Engelis (1987) is extended using the altimeter data obtained by the Geosat Exact Repeat Mission for simultaneous measurements of the stationary sea surface topography and geopotential coefficients. It is shown that the proper utilization of the Geosat altimeter data significantly improved the quality of field modeling at wave numbers by providing, simultaneously, the solution for improved orbits and the oceanographic information on the global scale. A new set of Geosat geophysical data records with the improved orbits was created, which also contains the values of the geoid undulation computed from a recent spherical harmonic expansion to degree 360.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 95; 13151-13
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-12
    Description: Consideration is given to the possibility of combining low-degree satellite-derived geopotential models with the harmonic coefficients of the topographic-isostatic potential implied by the Airy/Heiskanen isostatic hypothesis. The compilation of a topographic database providing information pertaining to terrain type classification is discussed. The formulation for the determination of harmonic coefficients of the topographic-isostatic potential is extended beyond to cases discussed by Lachapelle (1976) to include various terrain types. This formulation and the series expansion approach of Rummel et al. (1988) are implemented for potential coefficient determinations complete to degree and order 360. The topographic-isostatic coefficients are used with satellite-derived geopotential models to estimate mean gravity anomalies. The results are compared with observations to evaluate the quality of different estimation procedures.
    Keywords: GEOPHYSICS
    Type: Geophysical Journal International (ISSN 0955-419X); 100; 369-378
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-12
    Description: Two new geopotential coefficient models to spherical harmonic degree 360 are developed using recent advances made in theoretical modeling methods, satellite gravitational models, and expanded and improved terrestrial data. The new models are based on the combination of a satellite potential coefficient model (GEM-T2) to degree 50 with 30-arc mean gravity anomalies, yielding an adjusted set of coefficients and gravity anomalies, which were then harmonically analyzed to yield a set of potential coefficients to degree 360. The models were verified in several ways including satellite orbit residual analysis, demonstrating a substantial improvement over previous high-degree expansions.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 95; 21885-21
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...