ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • EARTH RESOURCES AND REMOTE SENSING  (3)
  • Earth Resources and Remote Sensing  (1)
  • 1990-1994  (4)
Collection
Keywords
  • EARTH RESOURCES AND REMOTE SENSING  (3)
  • Earth Resources and Remote Sensing  (1)
Years
  • 1990-1994  (4)
Year
  • 1
    Publication Date: 2011-08-19
    Description: The effects of soil optical properties on vegetation index imagery are analyzed with ground-based spectral measurements and both simulated and actual AVHRR data from the NOAA satellites. Soil effects on vegetation indices were divided into primary variations associated with the brightness of bare soils, secondary variations attributed to 'color' differences among bare soils, and soil-vegetation spectral mixing. Primary variations were attributed to shifts in the soil line owing to atmosphere or soil composition. Secondary soil variance was responsible for the Saharan desert 'artefact' areas of increased vegetation index response in AVHRR imagery.
    Keywords: EARTH RESOURCES AND REMOTE SENSING
    Type: International Journal of Remote Sensing (ISSN 0143-1161); 12; 1223-124
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-28
    Description: High spectral resolution reflectance spectra were collected over a semi-desert grassland at both dry and wet season periods. Spectral reflectance measurements were made from several viewing angles at both low and high solar zenith angles. A mixture model was used to separate and extract green vegetation from dry/dead vegetation and soil. The extracted vegetation signal varied greatly with view and sun angle variations such that off-nadir viewing and illuminating angles resulted in the highest vegetation loadings. These variations were normalized with cosine functions for both sun and view angle. These results offer a methodology for standardizing multi-temporal and multi-angular satellite measurements of vegetation activity.
    Keywords: EARTH RESOURCES AND REMOTE SENSING
    Type: In: IGARSS '92; Proceedings of the 12th Annual International Geoscience and Remote Sensing Symposium, Houston, TX, May 26-29, 1992. Vol. 1 (A93-47551 20-43); p. 752-754.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: A shrub savannah landscape in Niger was optically characterized utilizing blue, green, red and near-infrared wavelengths. Selected vegetation indices were evaluated for their performance and sensitivity to describe the complex Sahelian soil/vegetation canopies. Bidirectional reflectance factors (BRF) of plants and soils were measured at several view angles, and used as input to various vegetation indices. Both soil and vegetation targets had strong anisotropic reflectance properties, rendering all vegetation index (6) responses to be a direct function of sun and view geometry. Soil background influences were shown to alter the response of most vegetation indices. N-space greenness had the smallest dynamic range in VI response, but the n-space brightness index provided additional useful information. The global environmental monitoring index (GEMI) showed a large 6 dynamic range for bare soils, which was undesirable for a vegetation index. The view angle response of the normalized difference vegetation index (NDVI), atmosphere resistant vegetation index (ARVI) and soil atmosphere resistant vegetation index (SARVI) were asymmetric about nadir for multiple view angles, and were, except for the SARVI, altered seriously by soil moisture and/or soil brightness effects. The soil adjusted vegetation index (SAVI) was least affected by surface soil moisture and was symmetric about nadir for grass vegetation covers. Overall the SAVI, SARVI and the n-space vegetation index performed best under all adverse conditions and were recommended to monitor vegetation growth in the sparsely vegetated Sahelian zone.
    Keywords: Earth Resources and Remote Sensing
    Type: NASA-CR-200314 , NAS 1.26:200314 , (ISSN 0168-1923)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-27
    Description: Directional reflectance measurements were made over a semi-desert gramma grassland at various times of the growing season. View angle measurements from +40 to -40 degrees were made at various solar zenith angles and soil moisture conditions. The sensitivity of the Normalized Difference Vegetation Index (NDVI) and the Soil Adjusted Vegetation Index (SAVI) to bidirectional measurements was assessed for purposes of improving remote temporal monitoring of vegetation dynamics. The SAVI view angle response was found to be symmetric about nadir while the NDVI response was strongly anisotropic. This enabled the view angle behavior of the SAVI to be normalized with a cosine function. In contrast to the NDVI, the SAVI was able to minimize soil moisture and shadow influences for all measurement conditions.
    Keywords: EARTH RESOURCES AND REMOTE SENSING
    Type: Remote Sensing of Environment (ISSN 0034-4257); 41; 3-Feb; 143-154
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...