ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 28 (1990), S. 1719-1736 
    ISSN: 0887-6266
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The effect of polar and nonpolar low molar mass diluents on the microstructure of lightly sulfonated polystyrene (SPS) ionomers was studied using electron spin resonance spectroscopy, small-angle x-ray scattering, and dynamic mechanical analysis. Nonpolar diluents primarily affected the hydrocarbon - rich phase, while polar diluents partitioned into the ion-rich regions and disrupted the supramolecular structure. The ionic clusters remained intact, even at elevated temperatures, upon the addition of nonpolar solvents such as dodecane and dioctylphthalate. More polar solvents such as methanol and glycerol swelled the ionic domains and promoted increased mixing of the two phases.
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 40 (1990), S. 1727-1743 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The photopolymerizable semi-interpenetrating polymer network-II being studied consists of a linear copolyester, a crosslinked network of multifunctional acrylate monomers and a very efficient photoinitiator system. Using both Raman and dynamic mechanical spectroscopy (DMS), it has been determined that the polymerizing network vitrifies after a very low level of crosslinking is attained. This results in a sample that has a Tg which is substantially lower than would be expected from knowledge of the values of Tg for the individual components of the blend. The extent of reaction and, therefore, the glass transition temperature can be increased by heating the sample during photopolymerization. In addition, the glass transition temperature of the network can be increased by thermally curing the sample after photopolymerization. It has been found that once the network has been fully cured, the glass transition temperature is much higher than would be predicted. This has been interpreted in terms of synergistic effects; conceivably, the acrylates form a tight matrix around the linear copolyester and effectively reduce the molecular mobility of the components. The results also show that the acrylates and the copolyester are not inherently miscible. However, if a sufficient concentration of acrylates is present, it is possible to prevent the copolyester from phase separating. Dynamic mechanical spectroscopy data do indicate that these semi-inter-penetrating polymer networks-II (semi-IPN-II) samples are somewhat heterogeneous; however, there does not seem to be any gross phase separation. Transmission, electron microscopy (TEM) results show that the most fully cured sample has domains on the order of 50-250 Å associated with the copolyester phase.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...