ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2048
    Keywords: Avena ; Gene expression (protein level) ; Photoregulation (phytochrome) ; Phytochrome ; Temporal regulation (phytochrome)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract An oat (Avena sativa L.) plant contains at least three phytochromes, which have monomeric masses of 125, 124, and 123 kilodaltons (kDa) (Wang et al., 1991, Planta 184, 96–104). The 124-kDa phytochrome is most abundant in dark-grown seedlings, while the other two phytochromes predominate in light-grown seedlings. Using three monoclonal antibodies, each specific to one of the three phytochromes, we have monitored by immunoblot assay the expression of these three phytochromes in the 5 d following onset of imbibition of seeds. On a per-organism basis, each of these three phytochromes increased in abundance for the first 3 d in the light, or for the first 4 d in darkness, after which they each began to decrease in quantity. When 3-d-old dark-grown seedlings were transferred to the light, the abundance of each of these three phytochromes decreased both in absolute amount and relative to the phytochrome levels in control seedlings kept in darkness. In contrast, when 3-d-old light-grown seedlings were transferred to darkness, the abundance of the 124-kDa and 125-kDa phytochromes increased while that of 123-kDa phytochrome remained unchanged. In each case, the level of phytochrome was greater than that of control seedlings maintained in the light. Thus, in addition to temporal regulation, all three phytochromes exhibit photoregulated expression at the protein level, although the magnitude of this photoregulation varies substantially.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2048
    Keywords: Avena ; Phytochrome (spatial distribution) ; Spatial distribution (phytochrome)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We have addressed two issues regarding the spatial distribution of three phytochromes in 3-d-old oat (Avena sativa L.) seedlings. Three monoclonal antibodies, GO-4, GO-7 and Oat-22, were used as probes. Each antibody detects only one of the phytochromes. The first issue is whether any of the phytochromes might be membrane-bound. To address this issue the abundance of each phytochrome in extracts prepared with either a detergent-free or a detergent-containing buffer was compared by immunoblot assay. The detergent-free buffer was formulated to extract only soluble protein, while the detergent-containing buffer was intended to extract both soluble and membrane proteins. None of the data indicate that any of these three phytochromes is membrane-bound in either a dark- or a light-grown seedling. The second issue is whether these three phytochromes are distributed differentially in 3-d-old dark- and light-grown seedlings. When seedlings were dissected into shoots, scutellums, and roots, all three phytochromes were detected in all three fractions from both dark- and light-grown seedlings. Each of the three phytochromes was most abundant in the shoot and least abundant in the root, except that in light-grown seedlings type I, etiolated-tissue phytochrome was more abundant in the root than in either the shoot or the scutellum. When the equivalent fractions dissected from different seedlings were compared, those dissected from dark-grown seedlings contained a higher quantity of each of the three phytochromes than did those dissected from light-grown seedlings, except that green-tissue, type II phytochromes did not differ significantly in the roots. At this level of resolution, no evidence was obtained to indicate a substantive difference among the three phytochromes in their spatial distribution.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Planta 188 (1992), S. 115-122 
    ISSN: 1432-2048
    Keywords: Glycine (phytochrome) ; Intracellular localization (phytochrome) ; Monoclonal antibody (phytochrome) ; Phytochrome (immunocytochemistry)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The intracellular distribution of phytochrome in hypocotyl hooks of etiolated soybean (Glycine max L.) has been examined by immunofluorescence using a newly produced monoclonal antibody (Soy-1) directed to phytochrome purified from etiolated soybean shoots. Cortical cells in the hook region exhibit the strongest phytochrome-associated fluorescence, which is diffusely distributed throughout the cytosol in unirradiated, etiolated seedlings. A redistribution of immunocytochemically detectable hytochrome to discrete areas (sequestering) following irradiation with red light requires a few minutes at room temperature in soybean, whereas this redistribution is reversed rapidly following irradiation with far-red light. In contrast, sequestering in oat (Avena sativa L.) occurs within a few seconds (D. McCurdy and L. Pratt, 1986, Planta167, 330–336) while its reversal by far-red light requires hours (J. M. Mackenzie Jr. et al., 1975, Proc. Natl. Acad. Sci. USA72, 799–803). The time courses, however, of red-light-enhanced phytochrome pelletability and sequestering are similar for soybean as they are for oat. Thus, while these observations made with a dicotyledon are consistent with the previous conclusion derived from work with oat, namely that sequestering and enhanced pelletability are different manifestations of the same intracellular event, they are inconsistent with the hypothesis that either is a primary step in the mode of action of phytochrome.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Planta 188 (1992), S. 115-122 
    ISSN: 1432-2048
    Keywords: Glycine (phytochrome) ; Intracellular localization (phytochrome) ; Monoclonal antibody (phytochrome) ; Phytochrome (immunocytochemistry)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The intracellular distribution of phytochrome in hypocotyl hooks of etiolated soybean (Glycine max L.) has been examined by immunofluorescence using a newly produced monoclonal antibody (Soy-1) directed to phytochrome purified from etiolated soybean shoots. Cortical cells in the hook region exhibit the strongest phytochrome-associated fluorescence, which is diffusely distributed throughout the cytosol in unirradiated, etiolated seedlings. A redistribution of immunocytochemically detectable hytochrome to discrete areas (sequestering) following irradiation with red light requires a few minutes at room temperature in soybean, whereas this redistribution is reversed rapidly following irradiation with far-red light. In contrast, sequestering in oat (Avena sativa L.) occurs within a few seconds (D. McCurdy and L. Pratt, 1986, Planta 167, 330–336) while its reversal by far-red light requires hours (J. M. Mackenzie Jr. et al., 1975, Proc. Natl. Acad. Sci. USA 72, 799–803). The time courses, however, of red-light-enhanced phytochrome pelletability and sequestering are similar for soybean as they are for oat. Thus, while these observations made with a dicotyledon are consistent with the previous conclusion derived from work with oat, namely that sequestering and enhanced pelletability are different manifestations of the same intracellular event, they are inconsistent with the hypothesis that either is a primary step in the mode of action of phytochrome.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...