ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • SOLAR PHYSICS  (13)
  • ASTROPHYSICS  (7)
  • 1990-1994  (20)
  • 1
    Publication Date: 2011-08-24
    Description: We report on the abundances of energetic particles from impulsive solar flares, including those from a survey of 228 He-3 rich events, with He-3/He-4 is greater than 0.1, observed by the International Sun Earth Explorer (ISEE) 3 spacecraft from 1978 August through 1991 April. The rate of occurrence of these events corresponds to approximately 1000 events/yr on the solar disk at solar maximum. Thus the resonant plasma processes that enhance He-3 and heavy elements are a common occurrence in impulsive solar flares. To supply the observed fluence of He-3 in large events, the acceleration must be highly efficient and the source region must be relatively deep in the atmosphere at a density of more than 10(exp 10) atoms/cu cm. He-3/He-4 may decrease in very large impulsive events because of depletion of He-3 in the source region. The event-to-event variations in He-3/He-4, H/He-4, e/p, and Fe/C are uncorrelated in our event sample. Abundances of the elements show a pattern in which, relative to coronal composition, He-4, C, N, and O have normal abundance ratios, while Ne, Mg, and Si are enhanced by a factor approximately 2.5 and Fe by a factor approximately 7. This pattern suggests that elements are accelerated from a region of the corona with an electron temperature of approximately 3-5 MK, where elements in the first group are fully ionized (Q/A = 0.5), those in the second group have two orbital electrons (Q/A approximately 0.43), and Fe has Q/A approximately 0.28. Ions with the same gyrofrequency absorb waves of that frequency and are similarly accelerated and enhanced. Further stripping may occur after acceleration as the ions begin to interact with the streaming electrons that generated the plasma waves.
    Keywords: SOLAR PHYSICS
    Type: Astrophysical Journal Supplement Series (ISSN 0067-0049); 90; 2; p. 649-667
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: The properties of MeV/amu ions in 64 corotating streams at and inside 1 AU associated with corotating high-speed streams from 1978 to 1986 during presolar maximum to near solar minimum conditions are discussed. Around 50 percent of the streams include significant ion intensity enhancements not associated with solar particle events or traveling interplanetary shocks. The ions stream nearly along the E x B drift direction in the spacecraft frame, corresponding to a weak sunward field-aligned streaming in the solar wind frame. The sunward streaming is consistent with particle acceleration in the outer heliosphere followed by diffusion into the inner heliosphere. The ion intensity is not correlated with the stream solar wind speed or with the increase in solar wind speed at the leading edge of the high-speed stream, suggesting that the local shock strength alone may not play a dominant role in determining the intensity.
    Keywords: SOLAR PHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 98; A1; p. 13-32.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-19
    Description: The results of a comprehensive search of the ISEE 3 energetic particle data for solar electron events with associated increases in elements with atomic number Z = 6 or greater are reported. A sample of 90 such events was obtained. The events support earlier evidence of a bimodal distribution in Fe/O or, more clearly, in Fe/C. Most of the electron events belong to the group that is Fe-rich in comparison with the coronal abundance. The Fe-rich events are frequently also He-3-rich and are associated with type III and type V radio bursts and impulsive solar flares. Fe-poor events are associated with type IV bursts and with interplanetary shocks. With some exceptions, event-to-event enhancements in the heavier elements vary smoothly with Z and with Fe/C. In fact, these variations extend across the full range of events despite inferred differences in acceleration mechanism. The origin of source material in all events appears to be coronal and not photospheric.
    Keywords: SOLAR PHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 357; 259-270
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-19
    Description: The abundances of elements in large solar energetic-particle events in the energy range of 2-12 MeV per nucleon are examined. It is confirmed that the abundances relative to mean values vary approximately monotonically as a function of mass, except for He-4; some events show a gradual depletion of heavy ions, whereas a small number displays a gradual increase. A further organization of abundance data is shown, which depends on the longitude of the source region. Enhancements in Fe/C and other heavy elements relative to C occur when source regions are near west 60 deg; the enhancements are attributed to the sampling of a flare-heated material. Depletions of these elements are found to be greatest for source regions near central meridian; they are matched by a steepening of the spectrum and can be understood in terms of diffusive shock acceleration.
    Keywords: SOLAR PHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 373; 675-682
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Description: We report an initial survey of solar wind silicon and oxygen using data obtained with the Ulysses Solar Wind Ion Composition Spectrometer. In this study, the O(+7)/O(+6) ratio is used to group silicon counts accumulated over a two month period. Results on Si charge state distributions, relative Si/O abundances, and associated proton kinetic temperature and speed distributions are presented.
    Keywords: SOLAR PHYSICS
    Type: In: Solar Wind Seven; Proceedings of the 3rd COSPAR Colloquium, Goslar, Germany, Sept. 16-20, 1991 (A93-33554 13-92); p. 337-340.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Acceleration of interstellar pickup H(+) and He(+) as well as of solar wind protons and alpha particles has been observed on Ulysses during the passage of a corotating interaction region (CIR) at approximately 4.5 AU. Injection efficiencies for both the high thermal speed interstellar pickup ions (H(+) and He(+)) and the low thermal speed solar wind ions (H(+) and He(++) are derived using velocity distribution functions of protons, pickup He(+) and alpha particles from less than 1 to 60 keV/e and of ions (principally protons) above approximately 60 keV. The observed spatial variations of the few keV and the few hundred keV accelerated pickup protons across the forward shock of CIR indicate a two stage acceleration mechanism. Thermal ions are first accelerated to speeds of 3 to 4 times the solar wind speed inside the CIR, presumably by some statistical mechanism, before reaching higher energies by a shock acceleration process. Our results also indicate that (1) the injection efficiencies for pickup ions are almost 100 times higher than they are for solar wind ions, (2) pickup H(+) and He(+) are the two most abundant suprathermal ion species and they carry a large fraction of the particle thermal pressure, (3) the injection efficiency is highest for protons, lowest for He(+), and intermediate for alpha particles, (4) both H(+) and He(+) have identical spectral shapes above the cutoff speed for pickup ions, and (5) the solar wind frame velocity distribution function of protons has the form F(w) = F(sub o)w(sup -4) for 1 is less than w is less than approximately 5, where w is the ion speed divided by the solar wind speed. Above w approximately 5-10 the proton spectrum becomes steeper. These results have important implications concerning acceleration of ions by shocks and CIRs, acceleration of anomalous cosmic rays, and particle dynamics in the outer heliosphere.
    Keywords: ASTROPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; A9; p. 17,637-17,643
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-12
    Description: A comprehensive list is presented of the solar wind oxygen and carbon charge states and abundances measured in all magnetosheath periods during the lifetime of the AMPTE/CCE satellite, 1984-1988. A surprisingly variable C/O ratio is found. The variations seem to be strongly correlated to the source temperature in the corona where the solar wind responsible for the particular flow originated.
    Keywords: SOLAR PHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 389; 791-799
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-14
    Description: Interstellar hydrogen ionized primarily by the solar wind has been detected by the Solar Wind Ion Composition Spectrometer instrument on the Ulysses spacecraft at a distance of 4.8 AUs from the sun. This 'pick-up' hydrogen is identified by its distinct velocity distribution function, which drops abruptly at twice the local solar wind speed. From the measured fluxes of pick-up protons and singly charged helium, the number densities of neutral hydrogen and helium in the distant regions of the solar system are estimated to be 0.077 +/- 0.015 and 0.013 +/- 0.003 per cu cm, respectively.
    Keywords: ASTROPHYSICS
    Type: Science (ISSN 0036-8075); 261; 5117; p. 70-73.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-27
    Description: We examine greater than 60-MeV/amu ion data from three spacecraft (IMP 8 and Helios 1 and 2) at the time of a number of short term (less than 20-day duration) cosmic ray decreases (greater than 1 GeV) detected by ground-based neutron monitors in the years 1976 to 1979. The multispacecraft data allow us to investigate the structure of the modulation region and in particular the relative importance, as a function of location, of the shock and shock driver (ejecta) in causing the reduction in particle densities. Although the shocks contributing to cosmic ray decrease often have particle enhancements associated with them in the greater than 60-meV/amu data, this is not the case for three of the events discussed in this paper where a shock-associated decrease is also evident. Whereas the shock can cause an increase or decrease at low (i.e., less than neutron monitor) energies, the reduction of particle densities in the driver, if it is intercepted, is usually evident at all energies. Thus the overall shape of a decrease at greater than 60 MeV/amu depends primarily on whether the ejecta is intercepted. We find that the particle density inside ejecta increases with increasing radical distance from the Sun. In many of the events in this study, entry and exit of ejecta are accompanied by abrupt changes in the decrease and recovery rates which indicate that the effect of the ejecta is local. In contrast, the effect of the shock lasts many days after the shock has passed by and is evident at large angular distances from the longitude of the solar source, i.e., the effect of the shock is nonlocal. Within 1 AU there seems to be no radial dependence of the shock effect. One cosmic ray decrease seen at Earth, which had an unusual profile, can be understood if the median plane of the ejecta was inclined to the ecliptic.
    Keywords: ASTROPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; A11; p. 21,429-21,441
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-28
    Description: We present new data on rare ions in the solar wind. Using the Ulysses-SWICS instrument with its very low background we have searched for low-charge ions during a 6-d period of low-speed solar wind and established sensitive upper limits for many species. In the solar wind, we found He(1+)/He(2+) of less than 5 x 10 exp -4. This result and the charge state distributions of heavier elements indicate that all components of the investigated ion population went through a regular coronal expansion and experienced the typical electron temperatures of 1 to 2 million Kelvin. We argue that the virtual absence of low-charge ions demonstrates a very low level of nonsolar contamination in the source region of the solar wind sample we studied. Since this sample showed the FlP effect typical for low-speed solar wind, i.e., an enhancement in the abundances of elements with low first ionization potential, we conclude that this enhancement was caused by an ion-atom separation mechanism operating near the solar surface and not by foreign material in the corona.
    Keywords: SOLAR PHYSICS
    Type: In: Solar Wind Seven; Proceedings of the 3rd COSPAR Colloquium, Goslar, Germany, Sept. 16-20, 1991 (A93-33554 13-92); p. 341-348.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...