ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-24
    Description: The Comprehensive Analytical Model of Rotorcraft Aerodynamics, CAMRAD, program is designed to calculate rotor performance, loads, and noise; helicopter vibration and gust response; flight dynamics and handling qualities; and system aeroelastic stability. The analysis is a consistent combination of structural, inertial, and aerodynamic models applicable to a wide range of problems and a wide class of vehicles. The CAMRAD analysis can be applied to articulated, hingeless, gimballed, and teetering rotors with an arbitrary number of blades. The rotor degrees of freedom included are blade/flap bending, rigid pitch and elastic torsion, and optionally gimbal or teeter motion. General two-rotor aircrafts can be modeled. Single main-rotor and tandem helicopter and sideby-side tilting proprotor aircraft configurations can be considered. The case of a rotor or helicopter in a wind tunnel can also be modeled. The aircraft degrees of freedom included are the six rigid body motion, elastic airframe motions, and the rotor/engine speed perturbations. CAMRAD calculates the load and motion of helicopters and airframes in two stages. First the trim solution is obtained; then the flutter, flight dynamics, and/or transient behavior can be calculated. The trim operating conditions considered include level flight, steady climb or descent, and steady turns. The analysis of the rotor includes nonlinear inertial and aerodynamic models, applicable to large blade angles and a high inflow ratio, The rotor aerodynamic model is based on two-dimensional steady airfoil characteristics with corrections for three-dimensional and unsteady flow effects, including a dynamic stall model. In the flutter analysis, the matrices are constructed that describe the linear differential equations of motion, and the equations are analyzed. In the flight dynamics analysis, the stability derivatives are calculated and the matrices are constructed that describe the linear differential equations of motion. These equations are analyzed. In the transient analysis, the rigid body equations of motion are numerically integrated, for a prescribed transient gust or control input. The CAMRAD program product is available by license for a period of ten years to domestic U.S. licensees. The licensed program product includes the CAMRAD source code, command procedures, sample applications, and one set of supporting documentation. Copies of the documentation may be purchased separately at the price indicated below. CAMRAD is written in FORTRAN 77 for the DEC VAX under VMS 4.6 with a recommended core memory of 4.04 megabytes. The DISSPLA package is necessary for graphical output. CAMRAD was developed in 1980.
    Keywords: AERODYNAMICS
    Type: ARC-12337
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: Airloads measured on a two-bladed helicopter rotor in flight, from the Tip Aerodynamic and Acoustic Test, are compared with calculations from a comprehensive helicopter analysis (CAMRAD/JA), and the pressures compared with calculations from a full-potential rotor code (FPR). The flight test results cover an advance ratio range from 0.19 to 0.38. The lowest speed case is characterized by the presence of significant blade-vortex interactions. Good correlation of peak-to-peak vortex-induced loads and the corresponding pressures is obtained. The results of the correlation for this two-bladed rotor are substantially similar to the results for three- and four-bladed rotors, concerning the tip vortex core size for best correlation, calculation of the peak-to-peak loads on the retreating side, and calculation of vortex-induced loads on inboard radial stations.
    Keywords: AERODYNAMICS
    Type: In: AHS and Royal Aeronautical Society, Technical Specialists' Meeting on Rotorcraft Acoustics(Fluid Dynamics, Philadelphia, PA, Oct. 15-17, 1991, Proceedings (A93-29401 10-71); 38 p.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Description: Experiments were conducted to observe the cross-sectional structure and streamwise growth of round transverse liquid jets injected into a highly accelerated boundary layer in supersonic flow. The accompanying shock structure was also visualized. In one case, a round jet of acetone was injected into a fully turbulent Mach 2.5 boundary layer that was subsequently accelerated and partially laminarized through a sharp Prandtl-Meyer expansion corner. In the second case, a jet was injected into the laminarized Mach 3.2 boundary layer downstream of the expansion corner at the same jet-to-freestream momentum ratio. The jet and shock structure in both cases were visualized using schlieren optics. Wall-flow patterns were visualized using paints. It was found that the lateral spreading of jets injected downstream of the expansion fan was augmented close to the wall and had a cross-sectional structure significantly different from that of the jet injected upstream: the upstream jet spreads rapidly at the expansion corner in both the lateral and vertical directions.
    Keywords: AERODYNAMICS
    Type: AIAA Journal (ISSN 0001-1452); 31; 10; p. 1827-1834.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-24
    Keywords: AERODYNAMICS
    Type: Journal of Propulsion and Power (ISSN 0748-4658); 8; 5, Se; 1079-108
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-19
    Description: It has been noted that while the nonequilibrium turbulence model of Johnson and King (1985, 1987) performed significantly better than alternative methods, differences between predicted and observed shock locations for certain weak interactions are produced due to a defficiency in the model's inner eddy viscosity formulation. A novel formulation for the model is presented which removes this deficiency, while satisfying the law of the wall for adverse pressure-gradient conditions better than either the original formulation or mixing-length theory.
    Keywords: AERODYNAMICS
    Type: AIAA Journal (ISSN 0001-1452); 28; 2000-200
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-08-19
    Keywords: AERODYNAMICS
    Type: AIAA Journal (ISSN 0001-1452); 28; 1426-143
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: An experimental investigation was performed to determine the low-speed aerodynamic performance characteristics of the trailed-rotor high-speed rotorcraft concept in its cruise configuration. A 15 percent scale semispan model was tested at speeds up to 180 knots in the NASA Ames 7-by 10-Foot Subsonic Wind Tunnel. The objective of this investigation was to determine specific aerodynamic performance characteristics to assist in evaluating the trailed rotor as a high-speed rotorcraft. The aerodynamic influence of the following model configuration changes were determined: ailerons, flaps, wing/pod angle, number of trailed blades, trailed-blade twist and azimuth, and wing/pod filet radius. The low-speed performance objectives for the concept were met and results indicated that the trailed-rotor model had no significant adverse aerodynamic characteristics. The optimum low-speed cruise configuration was determined. Results suggest the trailed-rotor concept has better low-speed cruise performance characteristics than the folding tiltrotor configuration.
    Keywords: AERODYNAMICS
    Type: AIAA PAPER 91-3230
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-28
    Description: The feasibility of a general theory for the time-domain unsteady aerodynamics of helicopter rotors is investigated. The wake theory gives a linearized relation between the downwash and the wing bound circulation, in terms of the impulse response obtained directly in the time domain. This approach makes it possible to treat general wake configurations, including discrete wake vorticity with rolled-up and distorted geometry. The investigation establishes the approach for model order reduction; determines when a constrained identification method is needed; verifies the formulation of the theory for rolled-up, distorted trim wake geometry; and verifies the formulation of the theory for wake geometry perturbations. The basic soundness of the approach is demonstrated by the results presented. A research program to complete the development of the method is outlined. The result of this activity will be an approach for analyzing the aeroelastic stability and response of helicopter rotors, while retaining the important influence of the complicated rotor wake configuration.
    Keywords: AERODYNAMICS
    Type: NASA-CR-177570 , A-90304 , NAS 1.26:177570
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-28
    Description: Airloads measured on a two-bladed helicopter rotor in flight during the Ames' Tip Aerodynamic and Acoustic Test are compared with calculations from a comprehensive helicopter analysis (CAMRAD/JA), and the pressures compared with calculations from a full-potential rotor code (FPR). The flight-test results cover an advance ratio range of 0.19 to 0.38. The lowest-speed case is characterized by the presence of significant blade-vortex interactions. Good correlation of peak-to-peak vortex-induced loads and the corresponding pressures is obtained. Results of the correlation for this two-bladed rotor are substantially similar to those for three- and four-bladed rotors, including the tip-vortex core size for best correlation, calculation of the peak-to-peak loads on the retreating side, and calculation of vortex iduced loads on inboard radial stations. The higher-speed cases are characterized by the presence of transonic flow on the outboard sections of the blade. Comparison of calculated and measured airloads on the advancing side is not considered appropriate because the presence of shocks makes chordwise integration of the measured data difficult. However, good correlation of the corresponding pressures is obtained.
    Keywords: AERODYNAMICS
    Type: NASA-TM-103982 , A-93001 , NAS 1.15:103982
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-06-28
    Description: Further measurements of buffeting, using wing-root strain gauges, were made in the NASA Langley 0.3 m Cryogenic Wind Tunnel to refine techniques which will be used in larger cryogenic facilities such as the United States National Transonic Facility (NTF) and European Transonic Wind Tunnel (ETW). The questions addressed included the relative importance of variations in frequency parameter and Reynolds number, the choice of model material (considering both stiffness and damping) and the effects of static aeroelastic distortion. The main series of tests was made on half models of slender 65 deg delta wings with a sharp leading edge. The three delta wings had the same planform but widely different bending stiffness and frequencies (obtained by varying both the material and the thickness of the wings). It was known that the flow on this configuration would be insensitive to variations in Reynold number. Additional tests were made on one unswept half-wing of aspect ratio 1.5 with an NPL 9510 aerofoil section, known to be sensitive to variations in Reynolds number at transonic speeds. For brevity the test Mach numbers were restricted to M = 0.21 and 0.35 for the delta wings and to M = 0.30 for the unswept wing.
    Keywords: AERODYNAMICS
    Type: NASA-TM-107621 , NAS 1.15:107621 , RAE-TM-AERO-2231
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...