ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-06-21
    Description: Vaccinia virus is no longer needed for smallpox immunization, but now serves as a useful vector for expressing genes within the cytoplasm of eukaryotic cells. As a research tool, recombinant vaccinia viruses are used to synthesize biologically active proteins and analyze structure-function relations, determine the targets of humoral- and cell-mediated immunity, and investigate the immune responses needed for protection against specific infectious diseases. When more data on safety and efficacy are available, recombinant vaccinia and related poxviruses may be candidates for live vaccines and for cancer immunotherapy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moss, B -- New York, N.Y. -- Science. 1991 Jun 21;252(5013):1662-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2047875" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacteriophages/genetics ; Gene Expression ; Genetic Engineering/methods ; *Genetic Vectors ; Humans ; Recombinant Proteins ; *Vaccines, Synthetic ; *Vaccinia virus/genetics/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1990-01-26
    Description: A synthetic peptidemimetic substrate of the human immunodeficiency virus 1 (HIV-1) protease with a nonhydrolyzable pseudodipeptidyl insert at the protease cleavage site was prepared. The peptide U-81749 inhibited recombinant HIV-1 protease in vitro (inhibition constant Ki of 70 nanomolar) and HIV-1 replication in human peripheral blood lymphocytes (inhibitory concentration IC50 of 0.1 to 1 micromolar). Moreover, 10 micromolar concentrations of U-81749 significantly inhibited proteolysis of the HIV-1 gag polyprotein (p55) to the mature viral structural proteins p24 and p17 in cells infected with a recombinant vaccinia virus expressing the HIV-1 gag-pol genes. The HIV-1 like particles released from inhibitor-treated cells contained almost exclusively p55 and other gag precursors, but not p24. Incubation of HIV-like particles recovered from drug-treated cultures in drug-free medium indicated that inhibition of p55 proteolysis was at least partially reversible, suggesting that U-81749 was present within the particles.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McQuade, T J -- Tomasselli, A G -- Liu, L -- Karacostas, V -- Moss, B -- Sawyer, T K -- Heinrikson, R L -- Tarpley, W G -- New York, N.Y. -- Science. 1990 Jan 26;247(4941):454-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Infectious Disease Research Unit, Upjohn Company, Kalamazoo, MI 49001.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2405486" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antiviral Agents/*pharmacology ; DNA, Viral/genetics ; Endopeptidases/*metabolism ; Fusion Proteins, gag-pol/genetics/metabolism ; Gene Products, gag/metabolism ; HIV Protease ; HIV-1/*drug effects/genetics/physiology ; Humans ; Lymphocytes/microbiology ; Molecular Sequence Data ; Molecular Structure ; Oligopeptides/*pharmacology ; Protease Inhibitors/*pharmacology ; Protein Precursors/metabolism ; RNA, Viral/metabolism ; Transfection ; Virus Replication/drug effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1990-04-20
    Description: The role of the immune response to hepatitis B virus (HBV)-encoded antigens in the pathogenesis of liver cell injury has not been defined because of the absence of appropriate experimental models. HBV envelope transgenic mice were used to show that HBV-encoded antigens are expressed at the hepatocyte surface in a form recognizable by major histocompatibility complex (MHC) class I-restricted, CD8+ cytotoxic T lymphocytes specific for a dominant T cell epitope within the major envelope polypeptide and by envelope-specific antibodies. Both interactions led to the death of the hepatocyte in vivo, providing direct evidence that hepatocellular injury in human HBV infection may also be immunologically mediated.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moriyama, T -- Guilhot, S -- Klopchin, K -- Moss, B -- Pinkert, C A -- Palmiter, R D -- Brinster, R L -- Kanagawa, O -- Chisari, F V -- CA34635/CA/NCI NIH HHS/ -- CA38635/CA/NCI NIH HHS/ -- CA40489/CA/NCI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1990 Apr 20;248(4953):361-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Research Institute of Scripps Clinic, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1691527" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Line, Transformed ; Cytotoxicity, Immunologic ; Epitopes/immunology ; Hepatitis B/*immunology ; Hepatitis B Surface Antigens/genetics/*immunology ; Histocompatibility Antigens Class I/immunology ; Liver/*immunology ; Mice ; Mice, Transgenic ; Molecular Sequence Data ; Simian virus 40 ; T-Lymphocytes, Cytotoxic/immunology ; T-Lymphocytes, Regulatory/immunology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1990-11-09
    Description: The complement system contributes to host defenses against invasion by infectious agents. A 35-kilodalton protein, encoded by vaccinia virus and secreted from infected cells, has sequence similarities to members of a gene family that includes complement control proteins. Biochemical and genetic studies showed that the viral protein binds to derivatives of the fourth component of complement and inhibits the classical complement cascade, suggesting that it serves as a defense molecule to help the virus evade the consequences of complement activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kotwal, G J -- Isaacs, S N -- McKenzie, R -- Frank, M M -- Moss, B -- New York, N.Y. -- Science. 1990 Nov 9;250(4982):827-30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2237434" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Chromatography, Gel ; Complement C4b/*metabolism ; *Complement Pathway, Classical ; Hemolytic Plaque Technique ; Immunoblotting ; Molecular Sequence Data ; Restriction Mapping ; Vaccinia virus/genetics/*immunology ; Viral Proteins/*genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...