ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Digitale Medien
    Digitale Medien
    Springer
    Annals of the Institute of Statistical Mathematics 42 (1990), S. 21-36 
    ISSN: 1572-9052
    Schlagwort(e): Censored data ; quantile function ; confidence band ; Wiener process ; granitic pluton
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Mathematik
    Notizen: Abstract Some new confidence bands are established for the quantile function from randomly censored data. The method does not require estimation of the density function. As an application, we construct bands for the quantile function of the length of fractures in the granitic plutons near Lac du Bonnet, Manitoba, where an Underground Research Laboratory is being built for the nuclear waste disposal program in Canada.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Springer
    Natural resources research 2 (1993), S. 122-139 
    ISSN: 1573-8981
    Schlagwort(e): Dempster-Shafer belief function ; Representation ; Geographic information system (GIS) ; Data integration ; Spatially distributed map pattern ; Favorability function ; Fuzzy set ; Certainty factor ; Geopotential map ; Prediction ; Natural resources ; Natural hazard ; Probability
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Geologie und Paläontologie
    Notizen: Abstract In mineral exploration, resource assessment, or natural hazard assessment, many layers of geoscience maps such as lithology, structure, geophysics, geochemistry, hydrology, slope stability, mineral deposits, and preprocessed remotely sensed data can be used as evidence to delineate potential areas for further investigation. Today's PC-based data base management systems, statistical packages, spreadsheets, image processing systems, and geographical information systems provide almost unlimited capabilities of manipulating data. Generally such manipulations make a strategic separation of spatial and nonspatial attributes, which are conveniently linked in relational data bases. The first step in integration procedures usually consists of studying the individual charateristics of map features and interrelationships, and then representing them in numerical form (statistics) for finding the areas of high potential (or impact). Data representation is a transformation of our experience of the real world into a computational domain. As such, it must comply with models and rules to provide us with useful information. Quantitative representation of spatially distributed map patterns or phenomena plays a pivotal role in integration because it also determines the types of combination rules applied to them. Three representation methods—probability measures, Dempster-Shafer belief functions, and membership functions in fuzzy sets—and their corresponding estimation procedures are presented here with analyses of the implications and of the assumptions that are required in each approach to thematic mapping. Difficulties associated with the construction of probability measures, belief functions, and membership functions are also discussed; alternative procedures to overcome these difficulties are proposed. These proposed techniques are illustrated by using a simple, artificially constructed data set.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    Springer
    Mathematical geology 25 (1993), S. 851-865 
    ISSN: 1573-8868
    Schlagwort(e): covariance matrix ; correlation matrix ; observations below detection limits ; maximum likelihiood estimation ; log-normal distribution function ; mean ; variances ; marginal maximum likelihood estimation
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Geologie und Paläontologie , Mathematik
    Notizen: Abstract Multivariate statistical analyses have been extensively applied to geochemical measurements to analyze and aid interpretation of the data. Estimation of the covariance matrix of multivariate observations is the first task in multivariate analysis. However, geochemical data for the rare elements, especially Ag, Au, and platinum-group elements, usually contain observations the below detection limits. In particular, Instrumental Neutron Activation Analysis (INAA) for the rare elements produces multilevel and possibly extremely high detection limits depending on the sample weight. Traditionally, in applying multivariate analysis to such incomplete data, the observations below detection limits are first substituted, for example, each observation below the detection limit is replaced by a certain percentage of that limit, and then the standard statistical computer packages or techniques are used to obtain the analysis of the data. If a number of samples with observations below detection limits is small, or the detection limits are relatively near zero, the results may be reasonable and most geological interpretations or conclusions are probably valid. In this paper, a new method is proposed to estimate the covariance matrix from a dataset containing observations below multilevel detection limits by using the marginal maximum likelihood estimation (MMLE) method. For each pair of variables, sayY andZ whose observations containing below detection limits, the proposed method consists of three steps: (i) for each variable separately obtaining the marginal MLE for the means and the variances, $$\widetilde{\widetilde\mu }_Y $$ , $$\widetilde{\widetilde\mu }_Z $$ , $$\widetilde{\widetilde\sigma }_{YY} $$ , and $$\widetilde{\widetilde\sigma }_{ZZ} $$ forY andZ: (ii) defining new variables by $$C = (Y - \widetilde{\widetilde\mu }_Y )/\sqrt {\widetilde{\widetilde\sigma }_{YY} } $$ and $$D = (Z - \widetilde{\widetilde\mu }_Z )/\sqrt {\widetilde{\widetilde\sigma }_{ZZ} } $$ and lettingA=C+D andB=C−D, and obtaining MLE for variances, $$\widetilde\sigma _ + $$ and $$\widetilde\sigma _ - $$ forA andB; (iii) estimating the correlation coefficient ϱYZ by $$\widetilde\rho _{YZ} = (\widetilde\sigma _ + - \widetilde\sigma _ - )/(\widetilde\sigma _ + + \widetilde\sigma _ - )$$ and the covariance σ YZ by $$\widetilde\sigma _{YZ} = \bar \rho _{YZ} \sqrt {\widetilde{\widetilde\sigma }_{YY} \widetilde{\widetilde\sigma }_{YY} .} $$ . The procedure is illustrated by using a precious metal geochemical data set from the Fox River Sill, Manitoba, Canada.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 1993-10-01
    Print ISSN: 1874-8961
    Digitale ISSN: 1874-8953
    Thema: Geologie und Paläontologie , Mathematik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 1993-06-01
    Print ISSN: 1520-7439
    Digitale ISSN: 1573-8981
    Thema: Geologie und Paläontologie
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...