ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Bituminous coal  (1)
  • Calcium uptake  (1)
  • Springer  (2)
  • Nature Publishing Group
  • 1990-1994  (2)
Collection
Publisher
  • Springer  (2)
  • Nature Publishing Group
Years
  • 1990-1994  (2)
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of industrial microbiology and biotechnology 6 (1990), S. 53-59 
    ISSN: 1476-5535
    Keywords: Bituminous coal ; Biosolubilization ; Penicillium sp. ; Surface colonization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary APenicillium sp. previously shown to grow on lignite coals degraded an air-oxidized bituminous coal (Illinois #6) to a material that was more than 80% soluble in 0.5 N NaOH. Scanning electron microscopy of the oxidized Illinois #6 revealed colonization of the surface by thePenicillium sp., production of conidia, and erosion of the coal surface. The average molecular weight (MW) of Illinois #6 degraded by the fungus and base-solubilized was approximately 1000 Da. The average MW for base-solubilized Illinois #6 that was not exposed to the fungus was 6000 Da, suggesting solubilizing mechanisms other than base catalysis. A spectrophotometric assay to quantify the microbial conversion of biosolubilized coal was developed. Standard curves were constructed based on the absorbance at 450 nm of different quantities of microbe-solubilized coal. An acid precipitation step was necessary to remove medium and/or microbial metabolites from solubilized coal to prevent overestimation of the extent of coal biosolubilization. Furthermore, the absorption spectra for different coal products varied, necessitating construction of standard curves for individual coals.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Planta 192 (1993), S. 98-103 
    ISSN: 1432-2048
    Keywords: Aluminum toxicity ; Calcium uptake ; Growth inhibition ; Root ; Triticum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The cation Al3+ is toxic to plants at micromolar concentrations and can severely inhibit root growth in solution experiments. Trivalent aluminum hydrolyzes in solution, and, apart from the Al3+ ion, which dominates speciation below pH 5.0, various mononuclear and polynuclear hydroxy-Al species can also occur (Kinraide 1991). Accumulating evidence suggests that Al3+ is the rhizotoxic species under the experimental conditions used in the present study (Kinraide 1991; Kinraide et al. 1992). The inhibition of Ca2+ uptake in roots by Al3+ has been proposed as a possible mechanism for Al3+ toxicity, and in this study the hypothesis was tested directly. Root growth and Ca2+ uptake were measured in 5-d-old seedlings of wheat (Triticum aestivum L. Thell) during exposure to Al3+ in a low-Ca2+ basal medium, and to Al3+ in the presence of added cations. Uptake of Ca2+ in whole roots and translocation to the shoot were measured using 45Ca2+, and localized measurements of net Ca2+ flux were also made at the root apex using the technique of microelectrode ion-flux estimation. Treatment with 2.64 μM AlCl3 in 226 μM CaCl2, at pH 4.5, severely inhibited root growth without affecting Ca2+ uptake. Addition of 30 mM Na2+, 3 mM Mg2+ or 50 μM tris(ethylenediamine)cobalt(III) to this Al3+ treatment restored root growth but significantly reduced Ca2+ uptake measured over the entire root system and at the root apex. The Al3+ and Ca2+ concentrations were adjusted so that the activities of the Al3+ and Ca2+ ions were constant in all solutions (1.5 μM and 200 μM, respectively). Root growth can be severely inhibited by Al3+ concentrations that do not affect Ca2+ uptake, while the addition of ameliorating cations depresses Ca2+ uptake. These results argue against the hypothesis that Al3+ inhibits root growth by reducing Ca2+ uptake.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...