ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Biomass  (1)
  • Cell wall elasticity  (1)
  • Springer  (2)
  • Annual Reviews
  • Oxford University Press
  • 1990-1994  (2)
Collection
Publisher
  • Springer  (2)
  • Annual Reviews
  • Oxford University Press
Years
Year
  • 1
    ISSN: 1432-1939
    Keywords: Elevated CO2 ; Moisture gradient ; Biomass ; Niche breadth ; Gray birch
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary To determine the effects of elevated CO2 and soil moisture status on growth and niche characteristics of birch and maple seedlings, gray birch (Betula populifolia) and red maple (Acer rubrum) were experimentally raised along a soil moisture gradient ranging from extreme drought to flooded conditions at both ambient and elevated atmospheric CO2 levels. The magnitude of growth enhancement due to CO2 was largely contingent on soil moisture conditions, but differently so for maple than for birch seedlings. Red maple showed greatest CO2 enhancements under moderately moist soil conditions, whereas gray birch showed greatest enhancements under moderately dry soil conditions. Additionally, CO2 had a relatively greater ameliorating effect in flooded conditions for red maple than for gray birch, whereas the reverse pattern was true for these species under extreme drought conditions. For both species, elevated CO2 resulted in a reduction in niche breadths on the moisture gradient; 5% for gray birch and 23% for red maple. Species niche overlap (proportional overall) was also lower at elevated CO2 (0.98 to: 0.88: 11%). This study highlights the utility of of experiments crossing CO2 levels with gradients of other resources as effective tools for elucidating the potential consequences of elevated CO2 on species distributions and potential interactions in natural communities.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1939
    Keywords: Global Change ; Forest regeneration ; Osmotic adjustment ; Cell wall elasticity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The effect of increasing atmospheric CO2 concentrations on tissue water relations was examined in Betula populifolia, a common pioneer tree species of the northeastern U.S. deciduous forests. Components of tissue water relations were estimated from pressure volume curves of tree seedlings grown in either ambient (350 μl l−1) or elevated CO2 (700 μl l−1), and both mesic and xeric water regimes. Both CO2 and water treatment had significant effects on osmotic potential at full hydration, apoplasmic fractions, and tissue elastic moduli. Under xeric conditions and ambient CO2 concentrations, plants showed a decrease in osmotic potentials of 0.15 MPa and an increase in tissue elastic moduli at full hydration of 1.5 MPa. The decrease in elasticity may enable plants to improve the soil-plant water potential gradient given a small change in water content, while lower osmotic potentials shift the zero turgor loss point to lower water potentials. Under elevated CO2, plants in xeric conditions had osmotic potentials 0.2 MPa lower than mesic plants and decreased elastic moduli at full hydration. The increase in tissue elasticity at elevated CO2 enabled the xeric plants to maintain positive turgor pressures at lower water potentials and tissue water contents. Surprisingly, the elevated CO2 plants under mesic conditions had the most inelastic tissues. We propose that this inelasticity may enable plants to generate a favorable water potential gradient from the soil to the plant despite the low stomatal conductances observed under elevated CO2 conditions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...