ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Institute of Physics (AIP)  (1)
  • 1990-1994  (1)
Collection
Years
Year
  • 1
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: X-ray lithography systems require sample chambers that can perform exposures in helium gas at atmospheric pressure. The interface between the experimental chamber and the beamline is critical for x-ray lithography and the storage ring. It must allow a high x-ray flux throughput while providing a vacuum barrier so that helium gas does not leak into the beam line and the storage ring. The beam line must also be designed to have protection in the case that a window does fail in order to minimize adverse effects to the ring and other systems. The details of the design for the vacuum system used on beam lines for the Center for X-ray Lithography at the University of Wisconsin Synchrotron Radiation Center 1-GeV electron storage ring are reported. Curved beryllium windows with a 1×5-cm2 aperture and 13 μm thick that have a leak rate less than 10−10 Torr l/s have been successfully used at the experimental chamber beam-line interface. This thin flat beryllium foil is mounted in a curved housing with a wire seal to minimize helium leakage. The window assembly is designed and has been tested to withstand substantial overpressure before failure. If the beryllium window does fail, the beamline has an acoustic delay line that is designed to delay the incoming shock wave of helium gas so that a fast valve at the end of the beam line will close and minimize leakage of helium into the storage ring. The acoustic delay line is designed with baffles to slow the shock front and a secondary thin window to protect against molecular diffusion into the storage ring. The acoustic delay line has been tested to determine the effect of baffle design on delay of the shock wave. A theoretical model that provides a good description of the acoustic delay has also been developed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...