ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Institute of Physics (AIP)  (2)
  • 1990-1994  (2)
Collection
Publisher
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 94 (1991), S. 3042-3049 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Partial radial distribution functions of standard Monte Carlo simulations were used as input for Reverse Monte Carlo simulation, a novel method for structural modeling. From detailed comparison of the two independent (MC and RMC) particle configurations it has turned out that sufficiently close agreement in radial distribution functions involves deeper structural similarities. RMC results, i.e., particle configurations produced by RMC upon the basis of partial radial distribution functions, are therefore applicable for detailed analysis of the structure, giving new prospects for data evaluation in neutron diffraction method. As a result of extensive Reverse Monte Carlo simulations of this work some new aspects of the technique itself could be revealed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 100 (1994), S. 3742-3746 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We propose a novel bulk phase Monte Carlo simulation technique, in which the energy is calculated by quantum mechanical methods. The semiempirical fragment self-consistent field technique applied divides the periodic simulation cell into two parts. The first is the subsystem where the important change (the random movement of an atom or molecule) takes place and the second is the environment exerting only secondary effects on the former. Expanding the electronic wave function on the basis of strictly localized molecular orbitals and/or atomic hybrid orbitals the wave function of the environment is obtained from simple coupled 2×2 secular equations. The conventional self-consistent field equations, with a perturbation term in the Fockian, have to be solved only for the subsystem. In this way the computational efforts are decreased drastically, as the dependence on the number of atoms in the environment reduces to quadratic instead of cubic or quartic as in conventional semiempirical or ab initio methods, respectively. We wrote a computer code and applied our method to amorphous silicon. Starting from a distorted tetrahedrally bonded random network model we performed Monte Carlo simulations using the fragment self-consistent field energy calculation. After equilibration we obtained distribution functions almost identical to the ones corresponding to the distortion free tetrahedrally bonded network. This finding confirms the adequacy of our method for this specific case.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...