ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cell & Developmental Biology  (23)
  • Wiley-Blackwell  (23)
  • American Geophysical Union (AGU)
  • National Academy of Sciences
  • 1990-1994  (23)
  • 1
    ISSN: 0362-2525
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Basement membranes (BMs) of vertebrates and invertebrates have been shown to contain glycoproteins and proteoglycans, which include oligosaccharides and glycosaminoglycans. Lectin binding sites were characterized in the BM of gastrulating embryos of the starfish, Pisaster ochraceus. In early and mid-gastrulae, the fluorescein isothiocyanate (FITC)-lectin conjugates of concanavalin A (Con A) and wheat germ agglutinin (WGA) reveal the presence of mannose/glucose and glucosamine/sialic acid residues in the BM of all regions of the embryos. However, in the late gastrula embryo, an apparent reduction of these components is observed over the esophageal BM. Ultrastructural studies using the lectin-gold conjugates Con A, Limax flavus agglutinin (LFA), specific for sialic acid, and Dolichos biflorus agglutinin (DBA), specific for galactosamine, demonstrate that most mannose/glucose and galactosamine containing residues lie in the lamina densa, whereas most sialic acid residues are located over the lamina lucida. In addition, a statistical analysis of lectin binding in the late gastrula embryo reveals that the amount of labelling with both Con A and LFA is significantly reduced in the esophageal region, suggesting that mannose/glucose and sialic acid residuces are reduced in this region. These results confirm the observations of the FITC-lectin studies described above. They also confirm earlier studies that demonstrated a difference in BM morphology of the esophageal region (Crawford, '88). Mesenchyme cells, some of which arise from the forming coeloms (Crawford, '90), and which may represent a distinct population, colonize exclusively on this esophageal BM, where they later differentiate into muscle. Quantitative differences in BM glycoconjugates may act to direct the presumptive muscle cells to the region of the esophagus. © 1992 Wiley-Liss, Inc.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 26 (1993), S. 214-226 
    ISSN: 0886-1544
    Keywords: mitosis ; autoantibodies ; kinetochore ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: We have identified a novel .ca 400 kDa cell-cycle dependent kinetochore associated protein in human cells, designated CENP-F, using human autoimmune serum. Immunofluorescence staining using the native serum, affinity purified antibodies, or antibodies raised against a cloned portion of CENP-F first reveals CENP-F homogeneously distributed throughout the nucleus of HeLa cells in the G2 stage of the cell cycle. Progression into prophase is accompanied by the localization of CENP-F to all the kinetochore regions of the karyotype. Kinetochore association is maintained throughout metaphase, but at the onset of anaphase CENP-F is no longer detected in association with the kinetochore but is found at the spindle mid-zone. By telophase, it is concentrated into a narrow band on either side of the midbody. Studies of the interaction of CENP-F with the kinetochore indicate that this protein associates with the kinetochore independent of tubulin and dissociation is dependent on events connected with the onset of anaphase. Nuclease digestion studies and immunoelectron-microscopy indicate that CENP-F is localized to the kinetochore plates and specifically to the outer surface of the outer kinetochore plate. The distribution of CENP-F closely parallels that of another high molecular weight kinetochore associated protein, CENP-E. Comparative studies indicate that there are antibodies in the CENP-F reactive autoimmune serum that recognize determinants present in the central helical rod domain of CENP-E. Immune depletion experiments confirm that CENP-F exhibits the distribution pattern in cells that was seen with the native autoimmune serum. © 1993 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 16 (1990), S. 93-98 
    ISSN: 0886-1544
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 22 (1992), S. 135-151 
    ISSN: 0886-1544
    Keywords: mitosis ; cytochalasin ; cell polarity ; tissue culture ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: When PtK2 cells round up in mitosis they leave retraction fibers attached between the substrate and the cell body. Retraction fibers and the region where they meet the cell body are rich in actin filaments as judged by phalloidin staining and electron microscopy. Video microscopy was used to study actin dependent motile processes on retraction fibers. Small, phase-dense nodules form spontaneously on the fibers, and move in to the cell body at a rate of 3 μm/minute. As they move in they increase progressively in phase-density. This movement appears to be related to actin dependent centripetal movement which has been previously studied in lamellipodia. Despite its generality, the mechanism of such movement is unknown, and retraction fibers present some special advantages for its study. Cytochalasin treatment causes nodules to stop moving and dissolve. Withdrawal of the drug causes them to reform and start moving. Surprisingly, movement after cytochalasin withdrawal was often outward, indicating a local reversal of cortical polarity. After a few minutes correct polarity is reestablished by a global control mechanism. The implications of these observations for the mechanism and polarity of actin dependent motility is discussed. © 1992 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 0730-2312
    Keywords: integrated rotating-wall vessel ; shear stress ; simulated microgravity ; three-dimensional tissues ; microcarriers ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: BHK-21 cells were cultured under various shear stress conditions in an Integrated Rotating-Wall Vessel (IRWV). Shear ranged from 0.5 dyn/cm2 (simulated microgravity) to 0.92 dyn/cm2. Under simulated microgravity conditions, BHK-21 cells complexed into three-dimensional cellular aggregates attaining 6 × 106 cells/ml as compared to growth under 0.92 dyn cm2 conditions. Glucose utilization in simulated microgravity was reduced significantly, and cellular damage at the microcarrier surface was kept to a minimum. Thus, the integrated rotating wall vessel provides a quiescent environment for the culture of mammalian cells. © 1993 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 51 (1993), S. 290-300 
    ISSN: 0730-2312
    Keywords: microgravity-based bioreactors ; three-dimensional host-tumor interactions ; batch culture ; epithelial cells ; neoplastic transformation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Microgravity offers unique advantages for the cultivation of mammalian tissues because the lack of gravity-induced sedimentation supports three-dimensional growth in batch culture in aqueous medium. Bioreactors that simulate microgravity but operate in unit gravity provide conditions that permit human epithelial cells to grow to densities approaching 107 cells/ml on microcarriers in suspension, in masses up to 1 cm in diameter, and under conditions of low shear stress. While useful for many different applications in tissue culture, this culture system is especially useful for the analysis of the microenvironment in which host matrix and cells interact with infiltrating tumor cells. Growth in the microgravity-based bioreactor has supported morphological differentiation of human colon carcinoma cells when cultured with normal human stromal cells. Furthermore, these co-cultures produced factors that stimulated goblet cell production in normal colon cells in an in vivo bioassay. Early experiments also suggest that the microgravity environment will not alter the ability of epithelial cells to recognize and associate with each other and with constituents of basement membrane and extracellular matrix. These findings suggest that cells grown in bioreactors that simulate aspects of microgravity or under actual microgravity conditions will produce tissues and substances in sufficient quantity and at high enough concentration to promote characterization of molecules that control differentiation and neoplastic transformation. © 1993 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 0730-2312
    Keywords: osteoblasts ; osteosarcoma ; osteocalcin ; cell cyle ; alkaline phosphatase ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Establishing reuglatory mechanisms that mediate proliferation of osteoblasts while restricting expression of genes asociated with mature bone cell phenotypic properties to post-proliferative cells is fundamental to understanding skeletal development. To gain insight into relationships between growth control and the developmental expression of genes during osteblast differentiation, we have examined expression of three classes of genes during the cell cycle of normal diploid rat calvarial-derived osteoblasts and rat osteosarcoma cells (ROS 17/2.8): cell cycle and growth-related to the biosynthesis, organization, and mineralization of the bone extracellular matrix (e.g., alkaline phosphatase, collagen l, osteocalcin, and osteopontin). In normal diploid osteoblasts as well as in osteosarcoma cells we found that histone genes, required for cell progression, are selectively expressed during S phase. All other genes studied were constitutively expressed both at the transcriptional and posttranscriptional levels. Alkaline phosphatase, an integral membrane protein in both osteoblasts and osteosarcoma cells, exhibited only minimal changes in activity during the osteoblast and osteosarcoma cell cycles. Our findings clearly indicate that despite the loss of normal proliferation-differentiation interrelationships in osteosarcoma cells, cell cycle regulatin or constitutive expression of growth and phenotypic genes is maintained.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 56 (1994), S. 357-366 
    ISSN: 0730-2312
    Keywords: osteoblasts ; osteoclasts ; hormones ; cytokines ; hemopoietic cells ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The cells of bone are of two lineages, the osteoblasts arising from pluripotential mesenchymal cells and osteoclasts from hemopoietic precursors of the monocyte-macrophage series. Resorption of bone by the multinucleate osteoclast requires the generation of new osteoclastsw and their activation. Many hormones and cytokines are able to promote bone resorption by influencing these processes, but they achieve this without acting directly on osteoclastws. Most evidence indicates that their actions are mediated by cells of the osteoblast lineage. Evidence for hormone-and cytokine-induced activation of osteoclasts requiring the mediation of osteoblasts comes from studies of rsorption by isolated osteoclasts. However, consistent evidence for a spiceific “activating factor” is lacking, and the argument is presented that the isolated osteoclast resorption assays have not been shown convincingly to be assays of osteoclast activation. The view is presented that osteoblast-mediated osteoclast activation is the result of several events in the microenvironment without necessarily requiring the existence of a spicific, essential osteoclast activator. On the other hand, a specific promoter of osteoclast differentiation does seem likely to be a product of cells of the stromal/osteoblast series. Evidence in facour of this comes from studies of osteoclast generation in co-cultures of osteoblast/stromal cells with hemopoietic cells. Conflicting view, maintaining that osteoclasts can develop from hemooietic cells without stromal intervention, might be explaind by varying criteria used in identification of osteoclasts. Osteoblastic and osteoclastic renewal, and the interactions of these lineages, are central to the process of bone remodeling.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 0362-2525
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: External and internal feeding structures of the pelagic final phyllosoma, the transitional puerulus, and the benthic juvenile Western Rock Lobster, Panulirus cygnus, were studied by means of scanning electron microscopy. The study revealed that the external feeding structures of phyllosomata are well equipped for capture and mastication of food. The foregut, however, is not clearly divided into pyloric and cardiac regions and a gastric mill is absent, although a comb row and gland filter are present. Juveniles, on the other hand, have a well-developed gastric mill and gastric teeth, and a cardiopyloric valve separates the foregut into cardiac and pyloric regions. External mouthparts of juveniles are suitable for mastication of solid food particles and bear numerous setae. In contrast, external mouthparts of pueruli are largely non-setose. Furthermore, although the foregut is differentiated into pyloric and gastric regions and a gland filter and comb row are present, a functional gastric mill is absent during the puerulus stage. Absence of such structures indicates that the puerulus may be a non-feeding stage. It is postulated that absence of (or reduced) feeding may be a response to an increased risk of predation rather than a result of the considerable morphological changes taking place during the transition from a planktonic to a benthic lifestyle, as has been previously proposed. © 1994 Wiley-Liss, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Microscopy Research and Technique 24 (1993), S. 395-399 
    ISSN: 1059-910X
    Keywords: Ion compartmentation ; Salinity ; Cryomicroscopy ; Fixation methods ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Natural Sciences in General
    Notes: The determination of ion concentrations within cells and sub-cellular compartments remains a difficult procedure, as the volumes to be analyzed are rather small. X-ray microanalysis is sufficiently sensitive, and has adequate resolution, to measure these concentrations. The major difficulties are related to the preparation of material for analysis. We have compared the measurement of sodium, potassium, and chloride contents in a salt tolerant unicellular alga, Dunaliella parva, following either freeze-substitution (using two different resins) or molecular distillation drying. All three procedures gave similar results: after freeze substitution, ion contents were marginally (but not significantly) higher following embedding in Nanoplast MUV 116 resin than in Spurr resin. Since the Nanoplast can be polymerised at low temperatures, it has advantages over the Spurr resin. © 1993 Wiley-Liss, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...