ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (14)
  • Elsevier  (14)
  • American Chemical Society
  • American Chemical Society (ACS)
  • Nature Research
  • 1990-1994  (14)
  • 1
    facet.materialart.
    Unknown
    Elsevier
    In:  Amsterdam, 432 pp., Elsevier, vol. 167, no. XVI:, pp. 385-389, (ISBN 1-56670-263-3)
    Publication Date: 1994
    Keywords: 93.1060 ; Crustal deformation (cf. Earthquake precursor: deformation or strain) ; Textbook of geophysics ; Plate tectonics ; Fracture ; Tectonics ; Geol. aspects ; Rheology ; Stress ; cracks and fractures (.NE. fracturing) ; salt
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Elsevier
    In:  Amsterdam, Elsevier, vol. 65, no. ALEX(01)-FR-77-01, AFTAC Contract F08606-76-C-0025, pp. 95-104, (ISBN: 0-08-044051-7)
    Publication Date: 1993
    Keywords: Textbook of geophysics ; GeodesyY ; Geothermics ; Planetology ; ConvolutionE
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Elsevier
    In:  Continental Shelf Research, 11 (8-10). pp. 1155-1179.
    Publication Date: 2018-03-02
    Description: The inner Scotian Shelf off the Eastern Shore of Nova Scotia forms an irregular surface that extends some 25–30 km seaward of the present coastline to water depths of about 100 m where it drops off into Emerald Basin. The distribution of Late Quaternary deposits is highly variable both along and across the shelf. These sediments preserve a record of Late Wisconsinan glaciation, ice recession, and late- and post-glacial changes of relative sea level. Glaciomarine deposits occur in a valley complex extending seaward from Halifax Harbour. East of Halifax, we observe a three-part zonation across the inner shelf. The innermost zone extends to water depths of about 50 m. It is characterized by acoustic basement (Meguma Group metasediments), either outcropping or overlain by acoustically unstratified deposits, interpreted as glacial diamict, and by a unit interpreted as stratified outwash. These units are overlain by stratified valleyfill deposits representing Holocene lacustrine and estuarine facies, which have been sampled in a number of cores. Much of the inner shelf is covered by a thin veneer of sand and gravel, generally less than 1 m thick. Further seaward, the sea floor is an erosional unconformity that truncates acoustic units interpreted as glacial diamict and stratified drift. The stratified estuarine deposits found in the inner zone appear to be absent here, but thin patches of transgressive lag deposits occur throughout the area. The outer part of the inner shelf is dominated by outcrop of acoustic basement, with very limited surficial sediment cover. This zone of rugged outcrop occupies half or more of the inner shelf width over much of the study area. The extensive outcrop is attributed to a combination of glacial and/or glaciofluvial erosion, limited recessional deposition, and reworking of any remaining sediment cover by energetic long-period surface gravity waves under lower postglacial sea levels. Seaward of the outcrop zone, there is a transitional area between the inner shelf and Emerald Basin. This zone is characterized by high relief, with exposures of acoustic basement rising up to 60 m above intervening depressions. The depressions are partially filled by stratified glaciomarine and marine deposits up to 55 m thick. Lateral transitions between stratified and unstratified facies along a morainal ridge in northern Emerald Basin suggest the presence of a partially grounded floating ice margin in this area. Late-glacial relative sea level changes remain poorly defined. Several lines of evidence suggest high relative sea level early in the process of glacial recession from the inner shelf, followed by a rapid drop resulting from glacio-isostatic rebound. Samples of estuarine and salt-marsh deposits collected in cores from the inner part of the inner shelf provide evidence of Holocene marine transgression from below −40 m at 11,000 years BP, continuing to the present.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-03-07
    Description: As part of the NOAA/ROPME/MSRC sponsored assessment of the coast of Saudi Arabia, heavily impacted by the large oil spills of the 1991 Gulf War, we measured benthic community respiration (R) and primary production (P) rates in shallow subtidal basins near heavily oiled coastlines. Study sites were located in zones predicted to be basins of maximum deposition of any oiled sediments likely to wash off the adjacent coast and in reference bays predicted to be clean and unaffected. We measured oxygen exchange using in situ benthic respirometers and analysed petroleum hydrocarbon (PHC) levels in the near surface sediments at five stations. We concentrated our efforts in mud habitats to complement related studies in seagrass habitats. Measured community R rates ranged from a low of 700 μM m2 h−1 in coarse sand sediments with total organic carbon content (TOC) of only 0.16% of dry wt to the highest rate of 2184 μm m−2 h−1 in finer mud-sand habitats with 0.39% TOC. All measured rates were in the range of literature values for shallow marine sediments at temperatures of 17 to 19°C. Sediment oil content was 13–540 μg g−1 dry wt by ultraviolet fluorescence (UVF) analysis and 0.5–103 μg g−1 by gas chromatography (GC). Benthic P rates, calculated as light minus dark changes in dissolved oxygen, ranged from a low of 1162 μm m−2 h−1 at the most heavily oiled site to a high of 5216 μm m−2 h−1 at less oiled sites. While a weak inverse relationship between benthic P and sediment oil content was not significant statistically due to the small number of samples, a significant inverse relationship was found between the ratio of production to respiration (P/R) and the total petroleum content of the sediments by UVF. The effect appears to be driven more by differences in production than an effect on respiration which showed little relationship with either oil content or productivity. We conclude that within 1 year after the oil grounded on the intertidal sands of Saudi Arabia, the levels of oil in subtidal benthic sediments had decreased in most habitats to levels that did not show community stress by our oxygen measurements. Rather, long term damage to benthic subtidal habitats was limited only to enclosed bays adjacent to the most heavily oiled coastlines. Preliminary estimates of yearly P converted to carbon units indicates that the shallow mud sediments of the Gulf are at least as productive as most oligotrophic water columns. Since benthic habitats covered by seagrass, algae beds or coral reefs are likely to have even higher production rates, we conclude that benthic processes contribute significantly to the overall carbon flux in the Gulf ecosystem.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-09-24
    Description: For over thirty years man has studied “outer space” and installed satellites which watch the surface of the Earth. The great depths of the world ocean are, however, practically unknown and there is an urgent need to put abyssal benthic laboratories into “inner space” in order to study basic phenomena of interest to marine science and climatology as well as man's impact on the oceans. In view of the numerous problems related to global change, as a first step emphasis should first be on the role of the oceans and their inherent processes, which are the focus of such international programmes as the World Ocean Circulation Experiment (WOCE) and the Joint Global Ocean Flux Study (JGOFS). Multi-disciplinary registration of key events at selected key sites investigating the variability in time and space are of the utmost importance. The same methods and techniques must be used for the study of human impacts on the deep oceans caused by mining of metalliferous resources and by waste disposal as well as in basic studies. However, the investigation of the inner space of our planet has certain requirements. As long-term and large-scale investigations become more and more important, development of automized systems, largely independent from research vessels will be required. This will demand high capacities of energy for all technical functions as well as high storage capacities for data and samples. As a consequence the needs for two different—although overlapping—functional approaches are defined for future deep-sea deployments. (A) A system for long-term registration of the natural variability and long-term monitoring of human impacts: (B) A system for short-term observations and short-time experimentations. This report summarizes their technological demands. The envisioned interdisciplinary technology should deliver information on physical, biological and geochemical processes and their variabilities in the deep oceans. The prospected systems need to have the ability for real time video observation, data transfer and experimental manipulation, as well as sensing and sampling facilities with large storage capacities for long-term deployments. Prospective costs of the described multipurpose abyssal benthic laboratory will presumably exceed the funds for deep-sea research of a single country. A joint European effort could solve this problem and help to manifest a leading role for European marine science in international deep-sea and global change research.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-11-14
    Description: The Houtman Abrolhos Islands, situated at the western passive margin of the Australian continent, consist of a series of shelf-edge coral reefs. The central platforms of the reefs are Late Pleistocene in age and are generally some 3–5 m above present sea level. The uppermost part of the Last Interglacial reefs normally has an upward-shallowing sequence, consisting of coral framestone, coralline algal bindstone and skeletal grainstone to rudstone. This sequence represents deposition in water depths of less than 2 m, and provides a good indicator of sea level. High-precision mass-spectrometric dates of corals from the Abrolhos reefs, including dates obtained from drill cores, arological, isotopic and stratigraphic criteria are established for the selection of suitable samples for dating and for assessing the reliability of dates. Using the screened dates and the stratigraphic evidence, the timing and character of the sea level variations of the Last Interglacial in the Abrolhos region are examined. The data show that sea level of the Last Interglacial in the Abrolhos was 4 m below its present height by ca. 134 ka BP and probably reached about 2 m above present height at ca. 133 ka BP. The exact time at which sea level reached its peak (6 m above present sea level) cannot be determined from our data. But it is clear that the sea level high stand of the Last Interglacial lasted until ca. 116 ka BP and that for much of the Last Interglacial sea level at the Abrolhos was at a height of about 4 m above its present level
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Elsevier
    In:  Earth and Planetary Science Letters, 125 (1-4). pp. 105-118.
    Publication Date: 2016-11-14
    Description: To investigate the growth rates and absolute time stratigraphy of marine hydrogenetic ferromanganese encrustations, we performed 10Be profiling and ‘Co chronometry’ of crustal layers, as well as 87Sr86Sr and δ18O analysis of phosphatised limestone (francolite) within a ∼ 9.5 cm thick ferromanganese crust from Schumann Seamount in the Hawaiian Archipelago. Together with microfossil stratigraphy, our results indicate that some seamount crusts greatly exceed the commonly accepted Miocene maximum age, in this case probably approaching the Cretaceous age of the seamount. In addition to the unconformity at the crust-substrate boundary, at least eight major disconformities are indicated in the Schumann Seamount crust which probably represent depositional hiatuses or episodes of crust erosion. Three of the six upper disconformities can be placed at the Plio-Pleistocene, Middle Miocene and Paleocene-Eocene based on 10Be, microfossil and Co chronometer evidence. 87Sr86Sr and δ18O values of purified francolite from an inclusion-rich layer between the depths of 44 and 49 mm suggest apparent ages that approach those of Eocene-Late Paleocene microfossils reported in overlying layers, whereas francolite vein infillings in the lower part of the crust and in the basaltic substrate yield values that, if interpreted as ages of phosphatization, suggest a minimum Oligocene age. Paleotracking suggests the phosphogenesis observed here and on other Central Pacific seamounts could not have resulted from upwelling enhanced productivity associated with equatorial divergence if the Oligocene and Middle Miocene isotopic ages reported here and elsewhere are correct; however, a maximum Late Paleocene age for the phosphogenesis, consistent with the stratigraphy, would place these seamounts within 10°N of the equator. Paleotracking also suggests northeast tradewind transport of aluminosilicates in the Cenozoic, in agreement with other evidence for the antiquity of this ferromanganese crust.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-06-23
    Description: The Houtman Abrolhos reefs, situated on the western continental margin of Australia, occupy a transitional position between cool-water shelf carbonate sediments to the south and more tropical environments to the north. Their existence at the outer limits of the geographical range for coral reef growth is a result of the warm, poleward-flowing Leeuwin Current. Though the modern reefs differ ecologically from tropical reefs, their geological characteristics have been little known until recently. Each of the three island groups in the Abrolhos consists of a central platform of Last Interglacial reefs, about which windward and leeward Holocene reefs have developed asymmetrically. In the Easter Group the subtidal windward reef in the west is ca. 10 m thick and is backed by a leeward-prograding, lagoon sand sheet which is 0–3 m thick. The emergent parts of the leeward reefs in the east consist of an upward-shallowing sequence comprising reef facies, peritidal rudstone facies, and coral rubble storm ridges. This is underlain by over 26 m of Holocene reef facies. Coring and dating of the Holocene reefs (using both TIMS and 14C methods) in the Easter Group has shown significantly different lithofacies in the windward and leeward reefs, and has allowed reconstruction of Holocene reef growth and sea-level history. Coralline algal bindstones and interbedded coral framestone facies characterise the relatively slow-growing windward Holocene reefs, whereas the fast-growing leeward reefs consist of coral framestone facies which are dominated by Acropora. The leeward reefs commenced growth about 10,000 years ago and the Morley reef grew to 0.3 m above present sea level by 6400 years B.P., recording a relative high sea-level event. This generated Holocene constructional topography characterised by “blue-hole” terrain. Windward Holocene reef growth commenced after 8200 years B.P. following erosion of the windward part of the Last Interglacial platform. High wave energy and competition with macroalgae limited coral growth, and the coralline algal-dominated windward reefs grew more slowly to sea level. The Holocene sea-level record provided by dates from the 26 m core of the Morley reef (a “keep-up” reef) is the first such record from the western continental margin of Australia.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-10-10
    Description: The Shelf Edge Exchange Processes II (SEEP-II) program was designed to examine the potential for export of organic carbon from the continental shelf to the deeper ocean. In the Middle Atlantic Bight of the east coast, U.S.A., a “cold pool” of relict winter water is isolated by the development of a strong seasonal thermocline on the shelf. Oxygen concentrations were monitored in and above the cold pool from March 1988 to May 1989, with electrodes moored at 19 and 38 m at a 42-m station off the Delmarva Peninsula, eastern U.S.A. An oxygen-flux simulation model was constructed to describe long-term changes in oxygen concentration and saturation. The model utilized biological rate and biomass measurements obtained at the mooring location during cruises. Vertical eddy diffusion was constrained by comparison with the redistribution of chlorofluorocarbons and heat after stratification, and by sensitivity analyses. Model predictions of the average daily change in oxygen concentration and saturation at 38 m were in good agreement with average changes recorded by moored oxygen sensors, when biological generation of oxygen was approximately equal to the thermotrophic consumption. Strong, but transient, fluctuations concentration and saturation were clearly associated with specific advective events, and had little lasting impact on the overall long-term trends. Consequently, model parameters derived from intermittent, cruise-based observations yielded satisfactory predictions of long-term trends. A carbon budget was constructed for the stratified summer period from data that largely overlapped with those used for the oxygen model. The continental shelf ecosystem operates in approximate balance during the summer, with a potential export of no more than 4% of primary production.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-03-01
    Description: A closely spaced grid of seismic reflection profiles has permitted a description of the structure of the Vesterisbanken Seamount (Greenland Sea) and the distribution of the surrounding sediments. This isolated seamount is situated at 73°30′N, 9°10′W in the Greenland Basin and rises from the basin floor at a water depth of about 3100 m to ∼ 130 m below sea level; the maximum inclination of its slope is 26°. It is of basaltic origin, and reveals chaotic reflectors on the seismic profiles. No inhomogeneities are visible within the volcanic rocks of Vesterisbanken and the basement complex surrounding it. Dredge samples from the summit of Vesterisbanken reveal an age of ∼ 100,000 years. In the seismic records, there was no sediment cover discernable on top of or on the flanks of the seamount. At the base of Vesterisbanken, the seismic reflection characteristics suggest an alternation of sediments and basaltic rocks, the latter probably being the result of young lava flows. In some places the volcanic rocks disturb the sedimentary sequence to such a high degree, that the stratification is virtually eliminated. Volcanic activity also occurs in the vicinity of the seamount: for example, about 20 km northwest of Vesterisbanken an intrusion has pierced through 1000 m of sediment, almost reaching the seafloor. The sediment thickness is variable and it smooths the irregular basement topography. In addition, the sediment is characterized by local unconformities associated with onlap structures.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...