ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1990-05-04
    Description: Platelet-derived growth factor (PDGF) stimulates phospholipase C (PLC) activity and the phosphorylation of the gamma isozyme of PLC (PLC-gamma) in vitro and in living cells. The role of PLC-gamma in the phosphoinositide signaling pathway was addressed by examining the effect of overexpression of PLC-gamma on cellular responses to PDGF. Overexpression of PLC-gamma correlated with PDGF-induced tyrosine phosphorylation of PLC-gamma and with PDGF-induced breakdown of phosphatidylinositol 4,5-bisphosphate (PIP2). However, neither bradykinin- nor lysophosphatidic acid-induced phosphoinositide metabolism was enhanced in the transfected cells, suggesting that the G protein-coupled phosphoinositide responses to these ligands are mediated by other PLC isozymes. The enhanced PDGF-induced generation of inositol trisphosphate (IP3) did not enhance intracellular calcium signaling or influence PDGF-induced DNA synthesis. Thus, enzymes other than PLC-gamma may limit PDGF-induced calcium signaling and DNA synthesis. Alternatively, PDGF-induced calcium signaling and DNA synthesis may use biochemical pathways other than phosphoinositide metabolism for signal transduction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Margolis, B -- Zilberstein, A -- Franks, C -- Felder, S -- Kremer, S -- Ullrich, A -- Rhee, S G -- Skorecki, K -- Schlessinger, J -- New York, N.Y. -- Science. 1990 May 4;248(4955):607-10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Rorer Biotechnology, King of Prussia, PA 19406.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2333512" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/physiology ; Cattle ; Cell Division/*drug effects ; Cells, Cultured ; DNA Replication/drug effects ; Genetic Vectors ; Inositol Phosphates/metabolism ; Isoenzymes/biosynthesis/*genetics/metabolism ; Kinetics ; Mice ; Platelet-Derived Growth Factor/*pharmacology ; Second Messenger Systems/*drug effects ; Transfection ; Type C Phospholipases/biosynthesis/*genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-03-12
    Description: Regulation of cell proliferation, differentiation, and metabolic homeostasis is associated with the phosphorylation and dephosphorylation of specific tyrosine residues of key regulatory proteins. The phosphotyrosine phosphatase 1D (PTP 1D) contains two amino terminally located Src homology 2 (SH2) domains and is similar to the Drosophila corkscrew gene product, which positively regulates the torso tyrosine kinase signal transduction pathway. PTP activity was found to be regulated by physical interaction with a protein tyrosine kinase. PTP 1D did not dephosphorylate receptor tyrosine kinases, despite the fact that it associated with the epidermal growth factor receptor and chimeric receptors containing the extracellular domain of the epidermal growth factor receptor and the cytoplasmic domain of either the HER2-neu, kit-SCF, or platelet-derived growth factor beta (beta PDGF) receptors. PTP 1D was phosphorylated on tyrosine in cells overexpressing the beta PDGF receptor kinase and this tyrosine phosphorylation correlated with an enhancement of its catalytic activity. Thus, protein tyrosine kinases and phosphatases do not simply oppose each other's action; rather, they may work in concert to maintain a fine balance of effector activation needed for the regulation of cell growth and differentiation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vogel, W -- Lammers, R -- Huang, J -- Ullrich, A -- New York, N.Y. -- Science. 1993 Mar 12;259(5101):1611-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Max-Planck-Institut fur Biochemie, Martinsried, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7681217" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Line ; Chimera ; Drosophila/genetics ; Enzyme Activation ; Genes, src ; Humans ; Kidney ; Luminescent Measurements ; Mice ; Molecular Sequence Data ; Oligodeoxyribonucleotides ; Phosphorylation ; Phosphotyrosine ; Plasmids ; Protein Tyrosine Phosphatases/*metabolism ; Proto-Oncogene Proteins/genetics/metabolism ; Proto-Oncogene Proteins c-kit ; Proto-Oncogenes ; Receptor, Epidermal Growth Factor/genetics/metabolism ; Receptor, ErbB-2 ; Receptors, Platelet-Derived Growth Factor/genetics/metabolism ; Sequence Homology, Amino Acid ; Signal Transduction ; Transfection ; Tyrosine/*analogs & derivatives/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...