ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Amino Acid Sequence  (2)
  • Binding Sites  (2)
  • *Arabidopsis Proteins  (1)
  • American Association for the Advancement of Science (AAAS)  (3)
  • 1990-1994  (3)
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (3)
Years
Year
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1992-05-22
    Description: Multifunctional calcium-calmodulin-dependent protein kinase (CaM kinase) transduces transient elevations in intracellular calcium into changes in the phosphorylation state and activity of target proteins. By fluorescence emission anisotropy, the affinity of CaM kinase for dansylated calmodulin was measured and found to increase 1000 times after autophosphorylation of the threonine at position 286 of the protein. Autophosphorylation markedly slowed the release of bound calcium-calmodulin; the release time increased from less than a second to several hundred seconds. In essence, calmodulin is trapped by autophosphorylation. The shift in affinity does not occur in a site-directed mutant in which threonine at position 286 has been replaced by a non-phosphorylatable amino acid. These experiments demonstrate the existence of a new state in which calmodulin is bound to CaM kinase even though the concentration of calcium is basal. Calmodulin trapping provides for molecular potentiation of calcium transients and may enable detection of their frequency.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meyer, T -- Hanson, P I -- Stryer, L -- Schulman, H -- GM 40600/GM/NIGMS NIH HHS/ -- GM24032/GM/NIGMS NIH HHS/ -- MH45324/MH/NIMH NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1992 May 22;256(5060):1199-202.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Stanford University School of Medicine, CA 94305.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1317063" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Binding, Competitive ; Calcium/pharmacology ; Calcium-Calmodulin-Dependent Protein Kinases ; Calmodulin/*metabolism ; Cell Line ; Egtazic Acid/pharmacology ; Kinetics ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Phosphorylation ; Protein Binding ; Protein Kinases/genetics/*metabolism ; Recombinant Proteins/metabolism ; Spectrometry, Fluorescence ; Threonine ; Time Factors ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1994-10-21
    Description: The structure of the heterodimeric flavocytochrome c sulfide dehydrogenase from Chromatium vinosum was determined at a resolution of 2.53 angstroms. It contains a glutathione reductase-like flavin-binding subunit and a diheme cytochrome subunit. The diheme cytochrome folds as two domains, each resembling mitochondrial cytochrome c, and has an unusual interpropionic acid linkage joining the two heme groups in the interior of the subunit. The active site of the flavoprotein subunit contains a catalytically important disulfide bridge located above the pyrimidine portion of the flavin ring. A tryptophan, threonine, or tyrosine side chain may provide a partial conduit for electron transfer to one of the heme groups located 10 angstroms from the flavin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Z W -- Koh, M -- Van Driessche, G -- Van Beeumen, J J -- Bartsch, R G -- Meyer, T E -- Cusanovich, M A -- Mathews, F S -- GM-20530/GM/NIGMS NIH HHS/ -- GM-21277/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 Oct 21;266(5184):430-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7939681" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Chromatium/*enzymology ; Computer Graphics ; Crystallography, X-Ray ; Cytochrome c Group/*chemistry ; Electron Transport ; Flavin-Adenine Dinucleotide/metabolism ; Hydrogen Bonding ; Models, Molecular ; Oxidoreductases/*chemistry ; Protein Conformation ; Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-06-03
    Description: The plant hormone abscisic acid (ABA) mediates various responses such as stomatal closure, the maintenance of seed dormancy, and the inhibition of plant growth. All three responses are affected in the ABA-insensitive mutant abi1 of Arabidopsis thaliana, suggesting that an early step in the signaling of ABA is controlled by the ABI1 locus. The ABI1 gene was cloned by chromosome walking, and a missense mutation was identified in the structural gene of the abi1 mutant. The ABI1 gene encodes a protein with high similarity to protein serine or threonine phosphatases of type 2C with the novel feature of a putative Ca2+ binding site. Thus, the control of the phosphorylation state of cell signaling components by the ABI1 product could mediate pleiotropic hormone responses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meyer, K -- Leube, M P -- Grill, E -- New York, N.Y. -- Science. 1994 Jun 3;264(5164):1452-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Plant Sciences, Swiss Federal Institute of Technology, Zurich.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8197457" target="_blank"〉PubMed〈/a〉
    Keywords: Abscisic Acid/*pharmacology ; Amino Acid Sequence ; Arabidopsis/enzymology/genetics/*metabolism ; *Arabidopsis Proteins ; Binding Sites ; Calcium/metabolism ; Chromosome Walking ; Cloning, Molecular ; Genes, Plant ; Genetic Markers ; Molecular Sequence Data ; Mutation ; Phosphoprotein Phosphatases/chemistry/genetics/*metabolism ; Plants, Genetically Modified ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...