ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AIRCRAFT DESIGN, TESTING AND PERFORMANCE  (2)
  • *Vaccines  (1)
  • 1990-1994  (3)
  • 1940-1944
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-10-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, J W -- New York, N.Y. -- Science. 1994 Oct 28;266(5185):527-8.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7939695" target="_blank"〉PubMed〈/a〉
    Keywords: Child ; Child, Preschool ; *Developing Countries ; Humans ; *Immunization Programs ; Infant ; Research ; *Vaccines ; World Health Organization
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Data, tables, and graphs relative to the optimal trajectories for an aerospace plane are presented. A single-stage-to-orbit (SSTO) configuration is considered, and the transition from low supersonic speeds to orbital speeds is studied for a single aerodynamic model (GHAME) and three engine models. Four optimization problems are solved using the sequential gradient-restoration algorithm for optimal control problems: (1) minimization of the weight of fuel consumed; (2) minimization of the peak dynamic pressure; (3) minimization of the peak heating rate; and (4) minimization of the peak tangential acceleration. The above optimization studies are carried out for different combinations of constraints, specifically: initial path inclination that is either free or given; dynamic pressure that is either free or bounded; and tangential acceleration that is either free or bounded.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-CR-187848 , NAS 1.26:187848 , AAR-248-PT-2 , 1990 American Control Conference; May 23, 1990 - May 25, 1990; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The optimization of the trajectories of an aerospace plane is discussed. This is a hypervelocity vehicle capable of achieving orbital speed, while taking off horizontally. The vehicle is propelled by four types of engines: turbojet engines for flight at subsonic speeds/low supersonic speeds; ramjet engines for flight at moderate supersonic speeds/low hypersonic speeds; scramjet engines for flight at hypersonic speeds; and rocket engines for flight at near-orbital speeds. A single-stage-to-orbit (SSTO) configuration is considered, and the transition from low supersonic speeds to orbital speeds is studied under the following assumptions: the turbojet portion of the trajectory has been completed; the aerospace plane is controlled via the angle of attack and the power setting; the aerodynamic model is the generic hypersonic aerodynamics model example (GHAME). Concerning the engine model, three options are considered: (EM1), a ramjet/scramjet combination in which the scramjet specific impulse tends to a nearly-constant value at large Mach numbers; (EM2), a ramjet/scramjet combination in which the scramjet specific impulse decreases monotonically at large Mach numbers; and (EM3), a ramjet/scramjet/rocket combination in which, owing to stagnation temperature limitations, the scramjet operates only at M approx. less than 15; at higher Mach numbers, the scramjet is shut off and the aerospace plane is driven only by the rocket engines. Under the above assumptions, four optimization problems are solved using the sequential gradient-restoration algorithm for optimal control problems: (P1) minimization of the weight of fuel consumed; (P2) minimization of the peak dynamic pressure; (P3) minimization of the peak heating rate; and (P4) minimization of the peak tangential acceleration.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-CR-187868 , NAS 1.26:187868 , AAR-247 , American Control Conference; May 23, 1990 - May 25, 1990; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...