ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-24
    Description: A reduced dynamic filtering strategy that exploits the unique geometric strength of the Global Positioning System (GPS) to minimize the effects of force model errors has yielded orbit solutions for TOPEX/POSEIDON which appear accurate to better than 3 cm (1 sigma) in the radial component. Reduction of model error also reduces the geographic correlation of the orbit error. With a traditional dynamic approach, GPS yields radial orbit accuracies of 4-5 cm, comparable to the accuracy delivered by satellite laser ranging and the Doppler orbitography and radio positioning integrated by satellite (DORIS) tracking system. A portion of the dynamic orbit error is in the Joint Gravity Model-2 (JGM-2); GPS data from TOPEX/POSEIDON can readily reveal that error and have been used to improve the gravity model.
    Keywords: SPACECRAFT INSTRUMENTATION
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; C12; p. 24,449-24,464
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: The TOPEX/POSEIDON mission objective requires that the radial position of the spacecraft be determined with an accuracy better than 13 cm RMS (root mean square). This stringent requirement is an order of magnitude below the accuracy achieved for any altimeter mission prior to the definition of the TOPEX/POSEIDON mission. To satislfy this objective, the TOPEX Precision Orbit determination (POD) Team was established as a joint effort between the NASA Goddard Space Flight Center and the University of Texas at Austin, with collaboration from the University of Colorado and the Jet Propulsion Laboratory. During the prelaunch development and the post launch verification phases, the POD team improved, calibrated, and validated the precision orbit determination computer software systems. The accomplishments include (1) increased accuracy of the gravity and surface force models and (2) improved peformance of both laser ranging and Doppler tracking systems. The result of these efforts led to orbit accuracies for TOPEX/POSEIDON which are significantly better than the original mission requirement. Tests based on data fits, covariance analysis, and orbit comparisons indicate that the radial component of the TOPEX/POSEIDON spacecraft is determined, relative to the Earth's mass center, with an root mean square (RMS) error in the range of 3 to 4 cm RMS. This orbit accuracy, together with the near continuous dual-frequency altimetry from this mission, provides the means to determine the ocean's dynamic topography with an unprecedented accuracy.
    Keywords: SPACECRAFT INSTRUMENTATION
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; C12; p. 24,383-24,404
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Description: The sun emits hard X-rays (above 10 keV) during solar flares. Imaging hard X-ray sources on the sun with spatial resolutions on the order of 1-5 arcsec and integration times of 1 sec will provide greater insight into the energy release processes during a solar flare. In these events, tremendous amounts of energy stored in the solar magnetic field are rapidly released leading to emission across the electromagnetic spectrum. Two Fourier telescope designs, a spatial modulation collimator and a rotating modulation collimator, were developed to image the full sun in hard X-rays (10-100 keV) in an end-to-end simulation. Emission profiles were derived for two hard X-ray solar flare models taken from the current solar theoretical literature and used as brightness distributions for the telescope simulations. Both our telescope models, tailored to image solar sources, were found to perform equally well, thus offering the designer significant flexibility in developing systems for space-based platforms. Given sufficient sensitive areas, Fourier telescopes are promising concepts for imaging solar hard X-rays.
    Keywords: SPACECRAFT INSTRUMENTATION
    Type: In: EUV, X-ray, and gamma-ray instrumentation for astronomy III; Proceedings of the Meeting, San Diego, CA, July 22-24, 1992 (A93-29476 10-35); p. 433-449.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-24
    Description: The precision orbit determination (POD) experiment on TOPEX/POSEIDON using the Global Positioning System (GPS) is yielding concrete results. Orbit consistency and accuracy tests indicate that GPS is routinely providing satellite altitude with an accuracy of better than 3 cm. Here we review the GPS experiment, its basic concepts, POD techniques and key results, and discuss the possible cost and performance benefits that may flow to future missions.
    Keywords: SPACECRAFT INSTRUMENTATION
    Type: Geophysical Research Letters (ISSN 0094-8276); 21; 19; p. 2171-2174
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-06-28
    Description: The High Resolution Imaging Spectrometer (HIRIS) is a facility instrument slated for flight on the second EOS series AM platforms. HIRIS is designed to acquire 24 km wide, 30 m pixel images in 192 spectral bands simultaneously in the 0.4-2.45 micron wavelength region. With pointing mirrors it can sample any place on Earth, except the poles, every 2 days. HIRIS operates at the intermediate scale between the human and the global and therefore links studies of Earth surface processes to global monitoring carried out by lower resolution instruments. So far, over 50 science data products from HIRIS images have been identified in the fields of atmospheric gases, clouds, snow and ice, water, vegetation, and rocks and soils. The key attribute of imaging spectrometry that makes it possible to derive quantitative information from the data is the large number of contiguous, spectral bands. Therefore, spectrum-matching techniques can be applied. Such techniques are not possible with present-day, multispectral scanner data.
    Keywords: SPACECRAFT INSTRUMENTATION
    Type: AAS PAPER 92-003 , In: Guidance and control 1992; Proceedings of the 15th Annual AAS Rocky Mountain Conference, Keystone, CO, Feb. 8-12, 1992 (A93-50576 21-18); p. 643-664.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Description: The Arthur Holly Compton Gamma Ray Observatory (GRO) was launched by the shuttle Atlantis in April 1991. This paper presents the results of the attitude sensor calibration that was performed during the early mission. The GSFC Flight Dynamics Facility (FDF) performed an alignment calibration of the two fixed-head star trackers (FHST's) and two fine Sun sensors (FSS's) on board Compton GRO. The results show a 27-arcsecond shift between the bore sights of the FHST's with respect to prelaunch measurements. The alignments of the two FSS's shifted by 0.20 and 0.05 degree. During the same time period, the Compton GRO science teams performed an alignment calibration of the science instruments with respect to the attitude reported by the on board computer (OBC). In order to preserve these science alignments, FDF adjusted the overall alignments of the FHST's and FSS's, obtained by the FDF calibration, such that when up linked to the OBC, the shift in the OBC-determined attitude is minimized. FDF also calibrated the inertial reference unit (IRU), which consists of three dual-axis gyroscopes. The observed gyro bias matched the bias that was solved for by the OBC. This bias drifted during the first 6 days after release. The results of the FDF calibration of scale factor and alignment shifts showed changes that were of the same order as their uncertainties.
    Keywords: SPACECRAFT INSTRUMENTATION
    Type: Flight Mechanics(Estimation Theory Symposium, 1992; p 39-54
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: The results of on-orbit calibration for several satellites by the flight Dynamics Facility (FDF) at GSFC are reviewed. The examples discussed include attitude calibrations for sensors, including fixed-head star trackers, fine sun sensors, three-axis magnetometers, and inertial reference units taken from recent experience with the Compton Gamma Ray observatory, the Upper Atmosphere Research Satellite, and the Extreme Ultraviolet Explorer calibration. The methods used and the results of calibration are discussed, as are the improvements attained from in-flight calibration.
    Keywords: SPACECRAFT INSTRUMENTATION
    Type: IAF PAPER 92-0049
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: The science mission of the Extreme Ultraviolet Explorer (EUVE) requires attitude solutions with uncertainties of 27, 16.7, 16.7 arcseconds (3 sigma) around the roll, pitch, and yaw axes, respectively. The primary input to the attitude determination process is provided by two NASA standard fixed-head star trackers (FHSTs) and a Teledyne dry rotor inertial reference unit (DRIRU) 2. The attitude determination requirements approach the limits attainable with the FHSTs and DRIRU. The Flight Dynamics Facility (FDF) at Goddard Space Flight Center (GSFC) designed and executed calibration procedures that far exceeded the extent and the data volume of any other FDF-supported mission. The techniques and results of this attempt to obtain attitude accuracies at the limit of sensor capability and the results of analysis of the factors that limit the attitude accuracy are the primary subjects of this paper. The success of the calibration effort is judged by the resulting measurement residuals and comparisons between ground- and onboard-determined attitudes. The FHST star position residuals have been reduced to less tha 4 arcsec per axis -- a value that appears to be limited by the sensor capabilities. The FDF ground system uses a batch least-squares estimator to determine attitude. The EUVE onboard computer (OBC) uses an extended Kalman filter. Currently, there are systematic differences between the two attitude solutions that occasionally exceed the mission requirements for 3 sigma attitude uncertainty. Attempts to understand and reduce these differences are continuing.
    Keywords: SPACECRAFT INSTRUMENTATION
    Type: In: Spaceflight mechanics, 1993; AAS(AIAA Spaceflight Mechanics Meeting, 3rd, Pasadena, CA, Feb. 22-24, 1993, Parts 1 & 2 . A95-81344 (ISSN 0065-3438); p. 59-78
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: The accuracy of both onboard and ground attitude determination can be significantly enhanced by calibrating spacecraft attitude instruments (sensors) after launch. Although attitude sensors are accurately calibrated before launch, the stresses of launch and the space environment inevitably cause changes in sensor parameters. During the mission, these parameters may continue to drift requiring repeated on-orbit calibrations. The goal of attitude sensor calibration is to reduce the systematic errors in the measurement models. There are two stages at which systematic errors may enter. The first occurs in the conversion of sensor output into an observation vector in the sensor frame. The second occurs in the transformation of the vector from the sensor frame to the spacecraft attitude reference frame. This paper presents postlaunch alignment and transfer function calibration of the attitude sensors for the Compton Gamma Ray Observatory (GRO), the Upper Atmosphere Research Satellite (UARS), and the Extreme Ultraviolet Explorer (EUVE).
    Keywords: SPACECRAFT INSTRUMENTATION
    Type: In: Spaceflight dynamics 1993; AAS(NASA International Symposium, 8th, Greenbelt, MD, Apr. 26-30, 1993, Parts 1 & 2 . A95-85716 (ISSN 0065-3438); p. 1085-1099
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Space instruments for remote sensing, of the types used for astrophysics and solar-terrestrial physics among many disciplines, will grow to larger physical sizes in the future. The zero-g space environment does not inherently restrict such growth, because relatively lightweight structures can be used. Active servo control of the structures can greatly increase their size for a given mass. The Pinhole/Occulter Facility, a candidate Space Station attached payload, offers an example: it will achieve 0.2 arc s resolution by use of a 50-m baseline for coded-aperture telescopes for hard X-ray and gamma-ray imagers.
    Keywords: SPACECRAFT INSTRUMENTATION
    Type: High-energy astrophysics in the 21st century; Dec 11, 1989 - Dec 14, 1989; Taos, NM; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...