ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cell & Developmental Biology  (152)
  • Humans  (98)
  • 1990-1994  (230)
  • 1965-1969  (18)
  • 1940-1944  (2)
  • 1
    ISSN: 1040-452X
    Keywords: Embryonic stem cells ; Cell differentiation ; Pluripotency ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: Ten embryonic stem (ES) cell lines from mink blastocysts were isolated and characterized. All the lines had a normal diploid karyotype; of the ten lines studied, five had the XX and five had the XY constitution. Testing of the pluripotency of the ES-like cells demonstrated that (1) among four lines of genotype XX, an X was late-replicating in three; both Xs were active in about one-third of cells of line MES8, and analysis of glucose-6-phosphate dehydrogenase revealed no dosage compensation for the X-linked gene; (2) when cultured in suspension, the majority of lines were capable of forming “simple” embryoid bodies (EB), and two only showed the capacity for forming “cystic” multilayer EBs. However, formation of ectoderm or foci of yolk sac hematopoiesis, a feature of mouse ES ceils, was not observed in the “cystic” EB; (3) when cultured as a monolayer without feeder, the ES cells differentiated into either vimentin-positive fibroblast-like cells or cytokeratin-positive epithelial-like cells (less frequently); neural cells appeared in two lines; (4) when injected into athymic mice, only one of the four tested lines gave rise to tumors. These were fibrosarcomas composed of fibrobalst-like cells, with an admixture of smooth muscular elements and stray islets of epithelial tissue; (5) when the ES cells of line MES1 were injected into 102 blastocyst cavities and subsequently transplanted into foster mathers, we obtained 30 offspring. Analysis of the biochemical markers and coat color did not demonstrate the presence of chimaeras among offspring. Thus the cell lines derived from mink blastocysts are true ES cells. However, their pluripotential capacities are restricted. © 1992 Wiley-Liss, Inc.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1992-05-22
    Description: Human immunodeficiency virus type 1 (HIV-1) transmission from infected patients to health-care workers has been well documented, but transmission from an infected health-care worker to a patient has not been reported. After identification of an acquired immunodeficiency syndrome (AIDS) patient who had no known risk factors for HIV infection but who had undergone an invasive procedure performed by a dentist with AIDS, six other patients of this dentist were found to be HIV-infected. Molecular biologic studies were conducted to complement the epidemiologic investigation. Portions of the HIV proviral envelope gene from each of the seven patients, the dentist, and 35 HIV-infected persons from the local geographic area were amplified by polymerase chain reaction and sequenced. Three separate comparative genetic analyses--genetic distance measurements, phylogenetic tree analysis, and amino acid signature pattern analysis--showed that the viruses from the dentist and five dental patients were closely related. These data, together with the epidemiologic investigation, indicated that these patients became infected with HIV while receiving care from a dentist with AIDS.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ou, C Y -- Ciesielski, C A -- Myers, G -- Bandea, C I -- Luo, C C -- Korber, B T -- Mullins, J I -- Schochetman, G -- Berkelman, R L -- Economou, A N -- New York, N.Y. -- Science. 1992 May 22;256(5060):1165-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of HIV/AIDS, Centers for Disease Control, Atlanta, GA 30333.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1589796" target="_blank"〉PubMed〈/a〉
    Keywords: Acquired Immunodeficiency Syndrome/blood/microbiology/*transmission ; Amino Acid Sequence ; Base Sequence ; DNA, Viral/blood/genetics/isolation & purification ; *Dentistry ; Female ; Florida ; Genetic Variation ; HIV Infections/microbiology/*transmission ; HIV-1/*genetics/isolation & purification ; Humans ; Male ; Molecular Sequence Data ; Monocytes/physiology ; Oligodeoxyribonucleotides ; *Patients ; Phylogeny ; Sequence Homology, Nucleic Acid ; Viral Envelope Proteins/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1992-07-31
    Description: The Wilms tumor suppressor gene wt1 encodes a zinc finger DNA binding protein, WT1, that functions as a transcriptional repressor. The fetal mitogen insulin-like growth factor II (IGF-II) is overexpressed in Wilms tumors and may have autocrine effects in tumor progression. The major fetal IGF-II promoter was defined in transient transfection assays as a region spanning from nucleotides -295 to +135, relative to the transcription start site. WT1 bound to multiple sites in this region and functioned as a potent repressor of IGF-II transcription in vivo. Maximal repression was dependent on the presence of WT1 binding sites on each side of the transcriptional initiation site. These findings provide a molecular basis for overexpression of IGF-II in Wilms tumors and suggest that WT1 negatively regulates blastemal cell proliferation by limiting the production of a fetal growth factor in the developing vertebrate kidney.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Drummond, I A -- Madden, S L -- Rohwer-Nutter, P -- Bell, G I -- Sukhatme, V P -- Rauscher, F J 3rd -- CA 10817/CA/NCI NIH HHS/ -- CA 47983/CA/NCI NIH HHS/ -- CA 52009/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1992 Jul 31;257(5070):674-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of Chicago, IL 60637.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1323141" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Binding Sites ; Blotting, Northern ; DNA/chemistry/metabolism ; DNA-Binding Proteins/*metabolism ; Deoxyribonuclease I/metabolism ; *Gene Expression Regulation, Neoplastic ; Genes, Wilms Tumor/*physiology ; Humans ; Insulin-Like Growth Factor II/*genetics ; Kidney/embryology/metabolism ; Mice ; Molecular Sequence Data ; Promoter Regions, Genetic ; Rats ; Sequence Homology, Nucleic Acid ; Transfection ; WT1 Proteins ; Wilms Tumor/genetics/metabolism ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1990-06-01
    Description: An amyloid protein that precipitates in the cerebral vessel walls of Dutch patients with hereditary cerebral hemorrhage with amyloidosis is similar to the amyloid protein in vessel walls and senile plaques in brains of patients with Alzheimer's disease, Down syndrome, and sporadic cerebral amyloid angiopathy. Cloning and sequencing of the two exons that encode the amyloid protein from two patients with this amyloidosis revealed a cytosine-to-guanine transversion, a mutation that caused a single amino acid substitution (glutamine instead of glutamic acid) at position 22 of the amyloid protein. The mutation may account for the deposition of this amyloid protein in the cerebral vessel walls of these patients, leading to cerebral hemorrhages and premature death.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Levy, E -- Carman, M D -- Fernandez-Madrid, I J -- Power, M D -- Lieberburg, I -- van Duinen, S G -- Bots, G T -- Luyendijk, W -- Frangione, B -- AG 05891/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 1990 Jun 1;248(4959):1124-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, New York University Medical Center, NY 10016.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2111584" target="_blank"〉PubMed〈/a〉
    Keywords: Aged ; Aged, 80 and over ; Alleles ; Alzheimer Disease/*genetics ; Amino Acid Sequence ; Amyloid/*genetics ; Amyloid beta-Protein Precursor ; Amyloidosis/complications/*genetics ; Base Sequence ; Brain Chemistry ; Cerebral Hemorrhage/etiology/*genetics ; Cerebrovascular Disorders/complications/*genetics ; Dna ; Deoxyribonucleases, Type II Site-Specific ; Exons ; Female ; Genes, Dominant ; Humans ; Middle Aged ; Molecular Sequence Data ; *Mutation ; Netherlands ; Polymerase Chain Reaction ; Protein Precursors/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1991-11-15
    Description: Binding of ligand or antibody to certain cell-surface proteins that are anchored to the membrane by glycophosphatidylinositol (GPI) can cause activation of leukocytes. However, it is not known how these molecules, which lack intracellular domains, can transduce signals. The GPI-linked human molecules CD59, CD55, CD48, CD24, and CD14 as well as the mouse molecules Thy-1 and Ly-6 were found to associate with protein tyrosine kinases, key regulators of cell activation and signal transduction. A protein tyrosine kinase associated with the GPI-linked proteins CD59, CD55, and CD48 in human T cells, and with Thy-1 in mouse T cells was identified as p56lck, a protein tyrosine kinase related to Src. This interaction of GPI-linked molecules with protein tyrosine kinases suggests a potential mechanism of signal transduction in cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stefanova, I -- Horejsi, V -- Ansotegui, I J -- Knapp, W -- Stockinger, H -- New York, N.Y. -- Science. 1991 Nov 15;254(5034):1016-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Immunology-Vienna International Research Cooperation Center, University of Vienna, Austria.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1719635" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD/*physiology ; Antigens, Differentiation/physiology ; Cell Adhesion Molecules/physiology ; Glycolipids/physiology ; Glycosylphosphatidylinositols ; Humans ; Membrane Glycoproteins/physiology ; Membrane Proteins/*physiology ; Mice ; Phosphatidylinositols/physiology ; Phosphorylation ; Phosphotyrosine ; Protein-Tyrosine Kinases/*physiology ; Receptor Aggregation ; Receptors, Cell Surface/*physiology ; Signal Transduction ; Tyrosine/analogs & derivatives/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1991-10-25
    Description: The rate of net hepatic glycogenolysis was assessed in humans by serially measuring hepatic glycogen concentration at 3- to 12-hour intervals during a 68-hour fast with 13C nuclear magnetic resonance spectroscopy. The net rate of gluconeogenesis was calculated by subtracting the rate of net hepatic glycogenolysis from the rate of glucose production in the whole body measured with tritiated glucose. Gluconeogenesis accounted for 64 +/- 5% (mean +/- standard error of the mean) of total glucose production during the first 22 hours of fasting. In the subsequent 14-hour and 18-hour periods of the fast, gluconeogenesis accounted for 82 +/- 5% and 96 +/- 1% of total glucose production, respectively. These data show that gluconeogenesis accounts for a substantial fraction of total glucose production even during the first 22 hours of a fast in humans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rothman, D L -- Magnusson, I -- Katz, L D -- Shulman, R G -- Shulman, G I -- DK-34576/DK/NIDDK NIH HHS/ -- DK-40936/DK/NIDDK NIH HHS/ -- MO1-RR-00125-26/RR/NCRR NIH HHS/ -- R01 DK040936/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1991 Oct 25;254(5031):573-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06510.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1948033" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Blood Glucose/metabolism ; Carbon Isotopes ; Fasting ; Female ; Glucagon/blood ; *Gluconeogenesis ; Humans ; Hydrocortisone/blood ; Insulin/blood ; Kinetics ; Liver/*metabolism ; Liver Glycogen/*metabolism ; Magnetic Resonance Spectroscopy/methods ; Male ; Nitrogen/*urine
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1992-10-09
    Description: Approximately half of the neurons produced during embryogenesis normally die before adulthood. Although target-derived neurotrophic factors are known to be major determinants of programmed cell death--apoptosis--the molecular mechanisms by which trophic factors interfere with cell death regulation are largely unknown. Overexpression of the bcl-2 proto-oncogene in cultured sympathetic neurons has now been shown to prevent apoptosis normally induced by deprivation of nerve growth factor. This finding, together with the previous demonstration of bcl-2 expression in the nervous system, suggests that the Bcl-2 protein may be a major mediator of the effects of neurotrophic factors on neuronal survival.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Garcia, I -- Martinou, I -- Tsujimoto, Y -- Martinou, J C -- CA-50551/CA/NCI NIH HHS/ -- CA-51864/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1992 Oct 9;258(5080):302-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Centre Medical Universitaire, Geneva, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1411528" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis/*genetics ; Cell Death/*genetics ; Cells, Cultured ; Ganglia, Sympathetic/cytology ; Gene Expression ; Humans ; Nerve Growth Factors/physiology ; Neurons/*physiology ; Proto-Oncogene Proteins/*genetics ; Proto-Oncogene Proteins c-bcl-2 ; Rats ; Sympathetic Nervous System/*cytology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1994-03-25
    Description: The European wild boar was crossed with the domesticated Large White pig to genetically dissect phenotypic differences between these populations for growth and fat deposition. The most important effects were clustered on chromosome 4, with a single region accounting for a large part of the breed difference in growth rate, fatness, and length of the small intestine. The study is an advance in genome analyses and documents the usefulness of crosses between divergent outbred populations for the detection and characterization of quantitative trait loci. The genetic mapping of a major locus for fat deposition in the pig could have implications for understanding human obesity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Andersson, L -- Haley, C S -- Ellegren, H -- Knott, S A -- Johansson, M -- Andersson, K -- Andersson-Eklund, L -- Edfors-Lilja, I -- Fredholm, M -- Hansson, I -- New York, N.Y. -- Science. 1994 Mar 25;263(5154):1771-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8134840" target="_blank"〉PubMed〈/a〉
    Keywords: Adipose Tissue/*anatomy & histology ; Animals ; *Chromosome Mapping ; Crosses, Genetic ; Disease Models, Animal ; Female ; *Genes ; Genetic Markers ; Humans ; Intestine, Small/anatomy & histology ; Likelihood Functions ; Male ; Obesity/genetics ; Phenotype ; Swine/anatomy & histology/*genetics/growth & development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1994-11-25
    Description: GADD45 is a ubiquitously expressed mammalian gene that is induced by DNA damage and certain other stresses. Like another p53-regulated gene, p21WAF1/CIP1, whose product binds to cyclin-dependent kinases (Cdk's) and proliferating cell nuclear antigen (PCNA), GADD45 has been associated with growth suppression. Gadd45 was found to bind to PCNA, a normal component of Cdk complexes and a protein involved in DNA replication and repair. Gadd45 stimulated DNA excision repair in vitro and inhibited entry of cells into S phase. These results establish GADD45 as a link between the p53-dependent cell cycle checkpoint and DNA repair.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Smith, M L -- Chen, I T -- Zhan, Q -- Bae, I -- Chen, C Y -- Gilmer, T M -- Kastan, M B -- O'Connor, P M -- Fornace, A J Jr -- ES05777/ES/NIEHS NIH HHS/ -- New York, N.Y. -- Science. 1994 Nov 25;266(5189):1376-80.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Pharmacology, National Cancer Institute, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7973727" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Division/drug effects ; Cell Line ; Cyclin-Dependent Kinase Inhibitor p21 ; Cyclins/metabolism ; DNA/biosynthesis ; DNA Damage ; *DNA Repair ; *Genes, p53 ; Humans ; Intracellular Signaling Peptides and Proteins ; Proliferating Cell Nuclear Antigen/*metabolism ; Proteins/*metabolism/pharmacology ; Recombinant Proteins/metabolism/pharmacology ; S Phase/*drug effects ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1994-05-13
    Description: Growth factor receptor-bound protein 2 (Grb2) links tyrosine-phosphorylated proteins to a guanine nucleotide releasing factor of the son of sevenless (Sos) class by attaching to the former by its Src homology 2 (SH2) moiety and to the latter by its SH3 domains. An isoform of grb2 complementary DNA (cDNA) was cloned that has a deletion in the SH2 domain. The protein encoded by this cDNA, Grb3-3, did not bind to phosphorylated epidermal growth factor receptor (EGFR) but retained functional SH3 domains and inhibited EGF-induced transactivation of a Ras-responsive element. The messenger RNA encoding Grb3-3 was expressed in high amounts in the thymus of rats at an age when massive negative selection of thymocytes occurs. Microinjection of Grb3-3 into Swiss 3T3 fibroblasts induced apoptosis. These findings indicate that Grb3-3, by acting as a dominant negative protein over Grb2 and by suppressing proliferative signals, may trigger active programmed cell death.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fath, I -- Schweighoffer, F -- Rey, I -- Multon, M C -- Boiziau, J -- Duchesne, M -- Tocque, B -- New York, N.Y. -- Science. 1994 May 13;264(5161):971-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Rhone-Poulenc Rorer, Centre de Recherche de Vitry-Alfortville, Vitry sur Seine, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8178156" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; *Adaptor Proteins, Signal Transducing ; Amino Acid Sequence ; Animals ; *Apoptosis ; Base Sequence ; Cloning, Molecular ; Epidermal Growth Factor/pharmacology ; GRB2 Adaptor Protein ; Humans ; Mice ; Molecular Sequence Data ; Proteins/*genetics/metabolism ; RNA, Messenger/genetics/metabolism ; Rats ; Receptor, Epidermal Growth Factor/*metabolism ; T-Lymphocytes/cytology ; Thymus Gland/metabolism ; Transcriptional Activation/drug effects ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...