ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-08-31
    Description: We present images of the nightside of Venus taken in the near-infrared windows at 1.0, 1.1, 1.18, 1.28, 1.31, and 2.3 microns with the new infrared camera/spectrometer IRIS on the Anglo-Australian Telescope. These data were taken in spectral-mapping mode. This technique involves scanning the telescope perpendicular to the slit, while collecting spectra at successive slit positions across the planet. We produce data cubes with one spectral and two spatial dimensions. Images can be extracted over any wavelength regions. Each image has square pixels of 0.8 inch resolution. We reduced the scattered light from the sunlit crescent in images extracted from each window by subtracting images taken on either side of the window, where the Venus atmosphere is opaque. Unlike the short wavelength windows, which reveal thermal contrasts that originate primarily from the surface and deep atmosphere, the emission in the 2.3 microns window is produced at much higher altitudes (30-40 km). Emission contrasts seen near 2.3 microns are associated with horizontal variations in the cloud optical depths, and have rotation periods of about six days. We detect large contrasts in infrared emission (20-40 percent) across the disc of Venus in the 1.0-, 1.1-, 1.18-, 1.28-, and 1.31-micron images. Contrasts at these wavelengths may be due to a combination of variations in the optical depths of the overlying sulfuric acid clouds and differences in surface emission. Comparison with the 2.3-micron images show that the patterns seen in the 1.28- and 1.31-micron windows are consistent with cloud optical depth variations alone and require no contribution from the surface. However, images at 1.0, 1.1, and 1.8 microns from July 1991 show a dark feature having a contrast that increases with decreasing wavelength. This behavior is contrary to that expected of cloud absorption. Images taken on three successive days in October show another dark feature that is stationary with respect to the surface. These regions of lower emission correspond closely to the high-altitude surface regions of Beta Regio and Aphrodite Terra. The images can potentially reveal the near-infrared emissiveity of the surface of Venus, thereby complementing Magellan radar reflectivity and ground based radio emissivity measurements. The contrast ratio between highlands and plains is much smaller than would be expected for blackbody radiation from the surface along. Unlike at radio wavelengths, where the atmosphere is essentially transparent, at near-infrared wavelengths the atmosphere emits, absorbs, and scatters radiation, and can modify the observed topographically induced contrasts. The additional radiation from the atmosphere reduces the contrast, and further modification would be expected if terrain at different altitudes has different emissivities. A fit to our data therefore requires, and may constrain, a model of the lowest scale height of the atmosphere.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar and Planetary Inst., Papers Presented to the International Colloquium on Venus; p 70-71
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-31
    Description: Groundbased imaging and spectroscopic observations of Venus reveal intense near-infrared oxygen airglow emission from the upper atmosphere and provide new constraints on the oxygen photochemistry and dynamics near the mesopause (approximately 100 km). Atomic oxygen is produced by the Photolysis of CO2 on the dayside of Venus. These atoms are transported by the general circulation, and eventually recombine to form molecular oxygen. Because this recombination reaction is exothermic, many of these molecules are created in an excited state known as O2(delta-1). The airglow is produced as these molecules emit a photon and return to their ground state. New imaging and spectroscopic observations acquired during the summer and fall of 1991 show unexpected spatial and temporal variations in the O2(delta-1) airglow. The implications of these observations for the composition and general circulation of the upper venusian atmosphere are not yet understood but they provide important new constraints on comprehensive dynamical and chemical models of the upper mesosphere and lower thermosphere of Venus.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar and Planetary Inst., Papers Presented to the International Colloquium on Venus; p 23-24
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-19
    Description: Near-infrared images of Venus, obtained from a global network of ground-based observatories during January and February 1990, document the morphology and motions of the night-side near-infrared markings before, during, and after the Galileo Venus encounter. A dark cloud extended halfway around the planet at low latitudes and persisted throughout the observing program. It had a rotation period of 5.5 + or - 0.15 days. The remainder of this latitude band was characterized by small-scale (400 to 1000 km) dark and bright markings with rotation periods of 7.4 + or - 1 days. The different rotation periods for the large dark cloud and the smaller markings suggest that they are produced at different altitudes. Midlatitudes (+ or - 40 to 60 deg) were usually occupied by bright east-west bands. The highest observable latitudes (+ or - 60 deg to 70 deg) were always dark and featureless, indicating greater cloud opacity. Maps of the water vapor distribution show no evidence for large horizontal gradients in the lower atmosphere of Venus.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Science (ISSN 0036-8075); 253; 1538-154
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-19
    Description: Near-IR images and spectra of the night side of Venus taken at the Anglo-Australian Telescope during February 1990 reveal four new thermal emission windows at 1.10, 1.18, 1.27, and 1.31 microns, in addition to the previously discovered windows at 1.74 and 2.3 microns. Images of the Venus night side show similar bright and dark markings in all windows, but their contrast is much lower at short wavelengths. The 1.27-micron window includes a bright, high-altitude O2 airglow feature in addition to a thermal contribution from the deep atmosphere. Simulations of the 1.27- and 2.3-micron spectra indicate water vapor mixing ratios near 40 + or - 20 ppm by volume between the surface and the cloud base.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Science (ISSN 0036-8075); 253; 1263-126
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...