ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • LUNAR AND PLANETARY EXPLORATION  (77)
  • METEOROLOGY AND CLIMATOLOGY  (16)
  • SOLAR PHYSICS  (16)
  • 1990-1994  (105)
  • 1970-1974  (4)
  • 1
    Publication Date: 2011-08-24
    Description: One of the long-standing uncertainties in the wave-resonance theory of coronal heating is the stability of the resonance layer. The wave motions in the resonance layer produce highly localized shear flows which vary sinusoidally in time with the resonance period. This configuration is potentially susceptible to the Kelvin-Helmholtz instability (KHI), which can enhance small-scale structure and turbulent broadening of shear layers on relatively rapid ideal timescales. We have investigated numerically the response of a characteristic velocity profile, derived from resonance absorption models, to finite fluid perturbations comparable to photospheric fluctuations. We find that the KHI primarily should affect long (approximately greater than 6 x 10(exp 4) km) loops where higher velocity flows (M approximately greater than 0.2) exist in resonance layers of order 100 km wide. There, the Kelvin-Helmholtz growth time is comparable to or less than the resonance quarter-period, and the potentially stabilizing magnetic effects are not felt until the instability is well past the linear growth stage. Not only is the resonance layer broadened by the KHI, but also the convective energy transport out of the resonance layer is increased, thus adding to the efficiency of the wave-resonance heating process. In shorter loops, e.g., those in bright points and compact flares, the stabilization due to the magnetic field and the high resonance frequency inhibit the growth of the Kelvin-Helmholtz instability beyond a minimal level.
    Keywords: SOLAR PHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 421; 1; p. 372-380
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: An overview is presented of the tropical component of STEP. The STEP cooperative experiments are described and summaries are presented of the STEP tropical ER-2 aircraft flights. STEP tropical results on dehydration and transfer and the mechanisms of upward transfer are summarized. Illustrations show flight paths for each sortie on satellite images and on 100 hPa synoptic flow charts, as well as the timing of flights with respect to overall cloudiness in the Australian region.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Geophysical Research (ISSN 0148-0227); 98; D5; p. 8563-8589.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Description: The history and construction of Martian place names are examined. The 24 specific descriptor terms in use for Mars are defined. Informal names of individual rocks are discussed: the human fondness for informality is evident in the names attached to individual rocks at the Viking Lander sites.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: In: Mars (A93-27852 09-91); p. 1305-1314.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-24
    Description: HALOE observations of H2O and CH4 are compared with in situ techniques aboard the ER-2 aircraft during the northern winter of 1991/92, in particular for the dates 911208, 920108, 920217, 920222, and 920320 when the spatial coincidences are close, within +/- 1 deg latitude and +/- 12 deg longitude. The results reveal the limitations of comparing high resolution in situ aircraft data with a remote sounding limb scanner. Of the five comparison dates, three had HALOE/ER-2 coincidences which occurred near the edge of the Arctic vortex; the vertical variability in the HALOE results and the horizontal variability in the ER-2 observations on these days show that the vortex edge is not a region where exact agreement can be expected except by chance. On a 4th comparison date, there was substantial overlap away from the vortex edge, although for some species the aircraft data show considerable variability near the coincidence point. On the 5th comparison date, the ER-2 had no overlap in altitude with the lowest HALOE observations; however, a short linear interpolation over about 1 km altitude results in smooth composite profiles. Generally speaking the agreement between HALOE and the ER-2 at overlap altitudes is about 12 percent in the case of water vapor, which shows low horizontal and vertical variability. The agreement for methane, with limited data having altitude overlap, is better than 6 percent.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Geophysical Research Letters (ISSN 0094-8276); 20; 12; p. 1243-1246.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-24
    Description: HALOE observations of water vapor and methane during the period 21 September - 15 October 1992 are used to examine the role of Antarctic drying in the lower stratosphere. Zonal mean cross-sections of 2 CH4 + H2O show the probability of transport of Antarctic type dryness to latitudes as distant as 20 deg N, with major water vapor deficits evident between 10 and 100 mb to 10 deg S. Examination of monthly mean tropical 100 mb temperatures and of Antarctic temperatures suggests that the observations are consistent with stratospheric dryness being achieved by the combined effects of tropopause freeze-drying over the Micronesia region during northern winter and drying through the influence of the very low temperatures over Antarctica during southern winter. This paper presents these intriguing new results, and offers a possible explanation.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Geophysical Research Letters (ISSN 0094-8276); 20; 12; p. 1227-1230.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-08-24
    Description: The hydrologic cycle is a major part of the global climate system. There is an atmospheric flux of water from the ocean surface to the continents. The cycle is closed by return flow in rivers. In this paper a river routing model is developed to use with grid box climate models for the whole earth. The routing model needs an algorithm for the river mass flow and a river direction file, which has been compiled for 4 deg x 5 deg and 2 deg x 2.5 deg resolutions. River basins are defined by the direction files. The river flow leaving each grid box depends on river and lake mass, downstream distance, and an effective flow speed that depends on topography. As input the routing model uses monthly land source runoff from a 5-yr simulation of the NASA/GISS atmospheric climate model (Hansen et al.). The land source runoff from the 4 deg x 5 deg resolution model is quartered onto a 2 deg x 2.5 deg grid, and the effect of grid resolution is examined. Monthly flow at the mouth of the world's major rivers is compared with observations, and a global error function for river flow is used to evaluate the routing model and its sensitivity to physical parameters. Three basinwide parameters are introduced: the river length weighted by source runoff, the turnover rate, and the basinwide speed. Although the values of these parameters depend on the resolution at which the rivers are defined, the values should converge as the grid resolution becomes finer. When the routing scheme described here is coupled with a climate model's source runoff, it provides the basis for closing the hydrologic cycle in coupled atmosphere-ocean models by realistically allowing water to return to the ocean at the correct location and with the proper magnitude and timing.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Climate (ISSN 0894-8755); 7; 6; p. 914-928
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-08-24
    Description: Global water isotope geochemisty during the last glacial maximum (LGM) is simulated with an 8 deg x 10 deg atmospheric general circulation model (GCM). The simulation results suggest that the spatial delta O-18/temperature relationships observed for the present day and LGM climates are very similar. Furthermore, the temporal delta O-18/temperature relationship is similar to the present-day spatial relationship in regions for which the LGM/present-day temperature change is significant. This helps justify the standard practice of applying the latter to the interpretation of paleodata, despite the possible influence of other factors, such as changes in the evaportive sources of precipitation or in the seasonality of precipitation. The model suggests, for example, that temperature shifts inferred from ice core data may differ from the true shifts by only about 30%.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; D12; p.25791-25801
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-08-24
    Description: The evolution of Southern Hemisphere air masses observed by the Halogen Occultation Experiment (HALOE) during September 21 through October 15, 1992, is investigated using isentropic trajectories computed from United Kingdom Meteorological Office (UKMO) assimilated winds and temperatures. Maps of constituent concentrations are obtained by accumulation of air masses from previous HALOE occultations. Lagged correlations between initial and subsequent HALOE observations of the same air mass are used to validate the air mass trajectories. High correlations are found for lag times as large as 10 days. Frequency distributions of the air mass constituent concentrations are used to examine constituent distributions in and around the Southern Hemisphere polar vortex.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Geophysical Research Letters (ISSN 0094-8276); 21; 3; p. 213-216
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-08-24
    Description: The degree to which the Southern Hemisphere polar vortex is isolated against horizontal (isentropic) mixing is investigated using data from the Halogen Occultation Experiment (HALOE), U.K. Meteorological Office (UKMO) potential vorticity (PV), and contour advection diagnostics. Measurements of methane and water vapor taken by HALOE during a disturbed period in the Southern Hemisphere springtime (21 September - 15 October 1992) are interpreted in light of the prevailing synoptic meteorology. Daily fields of winds and PV are shown to be essential in the interpretation of the data. A climatological high pressure region is responsible for a distorted vortex, and a substantial 'vortex stripping' event is present, associated with the early stages of vortex breakdown. This leads to significant temporal, zonal, and altitudinal variations in the distribution of tracers. The authors point out the difficulties this presents for the interpretation of solar occultation data, especially with regard to the use of zonal average time series. Longitude-height methane distributions from two days during the period are examined. Both days show substantial variations in abundance around a latitude circle. In particular, the authors investigate HALOE measurements at 77 deg S on 15 October 1992, which indicate an abundance of methane in the height region 600-2000 K (approximately 30-1 mb) that is more typical of midlatitude air. Similar distributions, observed in the 1991 HALOE data, have previously been interpreted as evidence for the penetration of midlatitude air into the vortex. Gradients of potential vorticity and contour advection diagnositcs are employed to examine whether the UKMO winds are consistent with this hypothesis in 1992. Although midlatitude air is able to penetrate poleward of the main jet core by advection processes alone, an essentially intact inner core of vortex air remains, which does not mix to any great extent with air from lower latitudes. The authors show that the high-latitude HALOE abundances that are typical of midlatitude air were observed in a region of extensive filamentation and mixing, rather than within the inner, more isolated, core.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of the Atmospheric Sciences (ISSN 0022-4928); 51; 20; p. 2942-2956
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-08-24
    Description: The distribution of dehydrated air in the middle and lower stratosphere during the 1992 Southern Hemisphere spring is investigated using Halogen Occultation Experiment (HALOE) observations and trajectory techniques. Comparisons between previously published Version 9 and the improved Version 16 retrievals on the 700-K isentropic surface show very slight (0.05 ppmv) increases in Version 16 CH4 relative to Version 9 within the polar vortex. Version 16 H2O mixing ratios show a reduction of 0.5 ppmv relative to Version 9 within the polar night jet and a reduction of nearly 1.0 ppmv in middle latitudes when compared to Version 9. The version 16 HALOE retrievals show low mixing ratios of total hydrogen (2CH4 + H2O) within the polar vortex on both 700 and 425 K isentropic surfaces relative to typical middle-stratospheric 2CH4 + H2O mixing ratios. The low 2CH4 + H2O mixing ratios are associated with dehydration. Slight reductions in total hydrogen, relative to typical middle-stratospheric values, are found at these levels throughout the Southern Hemisphere during this period. Trajectory calculations show that middle-latitude air masses are composed of a mixture of air from within the polar night jet and air from middle latitudes. A strong kinematic barrier to large-scale exchange is found on the poleward flank of the polar night jet at 700 K. A much weaker kinematic barrier is found at 425 K. The impact of the finite tangent pathlength of the HALOE measurements is investigated using an idealized tracer distribution. This experiment suggests that HALOE should be able to resolve the kinematic barrier, if it exists.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of the Atmospheric Sciences (ISSN 0022-4928); 51; 20; p. 2931-2941
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...