ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (6)
  • Cambridge University Press  (6)
  • 1990-1994  (3)
  • 1970-1974  (3)
  • Physics  (6)
Collection
  • Articles  (6)
Years
Year
  • 1
    Publication Date: 1970-06-22
    Description: An effort is made to understand turbulence in fluid systems like the oceans and atmosphere in which the Richardson number is generally large. Toward this end, a theory is developed for turbulent flow over a flat plate which is moved and cooled in such a way as to produce constant vertical fluxes of momentum and heat. The theory indicates that in a co-ordinate system fixed in the plate the mean velocity increases linearly with height z above a turbulent boundary layer and the mean density decreases as z3, so that the Richardson number is large far from the plate. Near the plate, the results reduce to those of Monin & Obukhov. The curvature of the density profile is essential in the formulation of the theory. When the curvature is negative, a volume of fluid, thoroughly mixed by turbulence, will tend to flatten out at a new level well above the original centre of mass, thereby transporting heat downward. When the curvature is positive a mixed volume of fluid will tend to fall a similar distance, again transporting heat downward. A well-mixed volume of fluid will also tend to rise when the density profile is linear, but this rise is negligible on the basis of the Boussinesq approximation. The interchange of fluid of different, mean horizontal speeds in the formation of the turbulent patch transfers momentum. As the mixing in the patch destroys the mean velocity shear locally, kinetic energy is transferred from mean motion to disturbed motion. The turbulence can arise in spite of the high Richardson number because the precise variations of mean density and mean velocity mentioned above permit wave energy to propagate from the turbulent boundary layer to the whole region above the plate. At the levels of reflexion, where the amplitudes become large, wave-breaking and turbulence will tend to develop. The relationship between the curvature of the density profile and the transfer of heat suggests that the density gradient near the level of a point of inflexion of the density curve (in general cases of stratified, shearing flow) will increase locally as time goes on. There will also be a tendency to increase the shear through the action of local wave stresses. If this results in a progressive reduction in Richardson number, an ultimate outbreak of Kelvin–Helmholtz instability will occur. The resulting sporadic turbulence will transfer heat (and momentum) through the level of the inflexion point. This mechanism for the appearance of regions of low Richardson number is offered as a possible explanation for the formation of the surfaces of strong density and velocity differences observed in the oceans and atmosphere, and for the turbulence that appears on these surfaces. © 1970, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1971-10-29
    Description: Some experiments are described in which steady-state shearing flows are developed in stratified brine solutions contained in a cyclically continuous tank of rectangular cross-section. Over the range of overall Richardson numbers studied, the results suggest that whenever turbulent layers are present on either side of a region of fluid with a gravitationally stable density gradient, they cause erosion of this region to occur. The erosion leads to the formation of two homogeneous layers separated by a thin layer of strong density and velocity gradients. The gradient Richardson number, computed by using the velocity and density gradients in this transition layer, tends to have a value of order one. If we define an overall Richardson number Ri* by averaging the velocity and density gradients over the entire depth of fluid in the tank, we find that the non-dimensional buoyancy flux, Q, is functionally related to Ri* by an equation of the form Q = C1(Ri*)⊟1 where C1 is a constant, approximately, and Ri* ranges in value between one and thirty. To check the effect of a large variation of the molecular diffusivity coefficient on flow conditions, we ran a limited number of experiments with thermally stratified fluid. Over a restricted range, 1·0 ≪ Ri* ≪ 5·0, velocity profiles very similar to those measured in the brine-stratified experiments at like values of Ri* were obtained. This suggests that the coefficient of molecular diffusion is not an important parameter in either type of experiment. Other experiments, made in the same apparatus, describe the entrainment by a turbulent, homogeneous layer of an initially quiescent layer of fluid with a linear density gradient. The depth of the turbulent layer, D, increases with time, t, according to the relation. [formula omited] This result is consistent with that found by Kato & Phillips (1969), although the turbulent layer in the present experiment is generated in a different manner. © 1971, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1992-02-01
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1992-02-01
    Description: Incoherent turbulent motion modulated by coherent large-scale motion contributes to second-order coherent stresses. The spatial distribution of wave-induced stress was measured in a jet whose cross-section had been distorted through controlled resonant interactions between two forced, helical waves spinning in opposite directions. The transfer of energy from the coherent motion to broadband turbulence is documented. Shape assumptions are examined by comparing radial distributions to predictions from linear, inviscid stability theory. Control over small-scale mixing is examined by demodulating the coherent envelope of small-scale turbulence and by correlating it with features of the coherent, large-scale motion. Coherent production is shown to be associated with the roll-up process and there is evidence of secondary, inflexional instabilities. © 1992, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1973-10-09
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1992-12-01
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...