ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cellulose synthesizing enzyme complex  (2)
  • 1990-1994  (2)
  • 1970-1974
  • 1960-1964
  • 1
    ISSN: 1615-6102
    Keywords: Cellulose formation ; 2,6-Dichlorobenzonitrile ; Freeze etching ; Plasma membrane ; Cellulose synthesizing enzyme complex ; Tinopal LPW ; Vaucheria hamata
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The effects of 2,6-dichlorobenzonitrile (DCB, a known inhibitor of cellulose synthesis) and Tinopal LPW (TPL, an agent which disrupts glucan crystallization) on the structure of cellulose synthesizing complexes (terminal complexes, TCs) in the xanthophycean algaVaucheria hamata were investigated. DCB (10 μM) inhibits nascent fibril formation from the TC subunit (based on the absence of impressions) although it does not alter the overall shape of the rectangular TC during the short treatment of 20 min. With a prolonged treatment (60 min), the arrangement of TC subunits becomes disordered, and particles generally exhibited as doublets of subunits are released from each other. DCB also interferes with the formation of the overall shape of the TC although it does not disturb the conversion into TC rows of the subunits (the zymogenic precursor of the TC) packed in the globules. A 15 min treatment with TPL (1 mM) destroys the TC integrity by reducing the subunits into small fragments or particulate aggregates. The particulate rows of the TC are interrupted at many points, and fragments and particulate aggregates are dispersed by prolonged treatment (45 min) with TPL. Unlike DCB, TPL inhibits the conversion of globule subunits into TC rows. New insights on the structural characteristics necessary for cellulose microfibril assembly and possible mechanisms for the biogenesis of theVaucheria TC come from these data.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Protoplasma 166 (1992), S. 187-199 
    ISSN: 1615-6102
    Keywords: Cellulose microfibril ; Cellulose synthesis ; Cellulose synthesizing enzyme complex ; Freeze-etching ; High resolution electron microscopy ; Image processing ; Vaucheria hamata
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Ultrastructure and assembly of cellulose terminal synthesizing complexes (terminal complexes, TCs) in the algaVaucheria hamata (Waltz) were investigated by high resolution analytical techniques for freeze-fracture replication.Vaucheria TCs consist of many diagonal rows of subunits located on the inner leaflet of the plasma membrane. Each row contains about 10–18 subunits. The subunits themselves are rectangular, approx. 7×3.5 nm, and each has a single elliptical hole which may be the site of a single glucan chain polymerization. The subunits are connected with extremely small filaments (0.3–0.5 nm). Connections are more extensive in a direction parallel to the subunit rows and less extensive perpendicular to them. Nascent TC subunits are found to be packed within globules (15–20 nm in diameter) which are larger than typical intramembranous particles (IMPS are 10–11 nm in diameter) distributed in the plasma membrane. The subunits in the globule, which may be a zymogenic precursor of the TC, are generally exhibited in the form of doublets. Approximately 6 doublets are connected to a center core with small filaments. The globules are inserted into the plasma membrane together with IMPS by the fusion of cytoplasmic (Golgi derived) vesicles. Two or three globules attach to each other, unfold, and expand to form the first subunit rows of the TC on the inner leaflet of the plasma membrane. More globules attach to the structure and unfold until the nascent TC consists of a few rows of subunits. These rows are arranged almost parallel to each other. Two formation centers of subunits appear at both ends of an elongating TC. New subunits carried by the globules are added at each of these centers to create new rows until the elongating TC structure is completed. On the basis of this study, a model of TC assembly and early initiation of microfibril formation inVaucheria is proposed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...