ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (14)
  • 1990-1994  (12)
  • 1970-1974
  • 1965-1969  (2)
  • 1
    Publication Date: 2013-08-31
    Description: Efforts to improve the characteristics of fuel-oxidizer mixing in liquid rocket combustors have lead to a swirl element design for a liquid oxygen injector which is being considered for use on the STME. For the design which is the subject of this investigation, the oxygen enters the injector element perpendicular to the injector axis and nearly tangent to the circular injector wall. This swirl element is at one end of a tube and the injector exit is at the other. This geometric configuration creates a plume in the shape of a conical sheet. This sheet is either primarily contiguous liquid or droplets depending on the pressure drop in the injector and the distance from the injector exit. Probe-based devices such as two-dimensional grid patternators have been used to investigate simulated LOX injector flow fields (Hulka). The primary work described herein is an effort to use optical techniques to investigate the plume of a swirl injector element. For this investigation, a high pressure (500 psig) cold flow test facility was constructed. Water was used as the LOX simulate and air pressure was used to drive the injector flow field. Laser-induced fluorescence (LIF) from dye seeded into the water was used to obtain quantitative measurements of the time-averaged water concentration distribution in the plume. Scattered laser light and LIF were used for time averaged plume visualization and scattered light from a strobe with a 1 microsecond pulse was used for time-resolved plume visualization. During the Summer Faculty Fellowship for which this report was developed, an additional effort, unrelated to the swirl injector investigation, was made to resolve fluctuations in the combustion product composition in the exhaust of a hybrid rocket motor. A brief description of this effort is included herein.
    Keywords: SPACECRAFT PROPULSION AND POWER
    Type: Alabama Univ., 1992 NASA(ASEE Summer Faculty Fellowship Program; 5 p
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-31
    Description: A study of the staged injection of two jets of air behind a rearward facing step into a Mach 2 flow was performed using the SPARK 3-D Navier-Stokes code. Calculated mole fraction distributions were compared with an extensive set of planar mole fraction measurements made with a laser induced iodine fluorescence technique. A statistical measure, the standard deviation, was used to help assess agreement between calculation and experiment. Overall, good agreement was found between calculated and measured values. Generally, agreement was better in the far field of the injectors. The effect of grid resolution was investigated by calculating solutions on grids of 60,000, 200,000, and 450,000 points. Differences in the solutions on the two finer grids were small. However, the mole fraction distributions were distinguishable. The effect of turbulence modeling was investigated by employing three different algebraic models for the jet turbulence: the Baldwin-Lomax model, the Prandtl mixing length model, and the Eggers mixing length model. Overall, the Eggers mixing length model was found to be superior for this case. Finally, the effect of the jet exit conditions was examined. A recently proposed Mach number distribution at the jet exit was found to slightly improve agreement between measurement and calculation.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: 27th JANNAF Combustion Subcommittee Meeting; Volume 3; 115-129
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-19
    Description: A laser-induced iodine fluorescence technique that is suitable for the planar measurement of temperature in cold nonreacting compressible air flows is investigated analytically and demonstrated in a known flow field. The technique is based on the temperature dependence of the broadband fluorescence from iodine excited by the 514-nm line of an argon-ion laser. Temperatures ranging from 165 to 245 K were measured in the calibration flow field. This technique makes complete, spatially resolved surveys of temperature practical in highly three-dimensional, low-temperature compressible flows.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: Optics Letters (ISSN 0146-9592); 16; 106-108
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-05-30
    Description: Covariant Noether identities in covariant field theories
    Keywords: PHYSICS, GENERAL
    Type: NASA-CR-78874 , R-305
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Description: A nonintrusive optical technique, laser-induced iodine fluorescence, has been used to obtain planar measurements of flow field parameters in the supersonic mixing flow field of a nonreacting supersonic combustor. The combustor design used in this work was configured with staged transverse sonic injection behind a rearward-facing step into a Mach 2.07 free stream. A set of spatially resolved measurements of temperature and injectant mole fraction has been generated. These measurements provide an extensive and accurate experimental data set required for the validation of computational fluid dynamic codes developed for the calculation of highly three-dimensional combustor flow fields.
    Keywords: LASERS AND MASERS
    Type: AIAA PAPER 90-0162
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Description: A spatially-complete data set of the important primitive flow variables is presented for the complex, nonreacting, 3D unit combustor flow field employing transverse injection into a Mach 2 flow behind a rearward-facing step. A unique wind tunnel facility providing the capability for iodine seeding was built specifically for these measurements. Two optical techniques based on laser-induced-iodine fluorescence were developed and utilized for nonintrusive, in situ flow field measurements. LDA provided both mean and fluctuating velocity component measurements. A thermographic phosphor wall temperature measurement technique was developed and employed. Data from the 2D flow over a rearward-facing step and the complex 3D mixing flow with injection are reported.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AIAA PAPER 91-5071
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: Planar measurements of the injection mole fraction distribution and the velocity field within a nonreacting model SCRAMJET combustor have been made using laser-induced iodine fluorescence. The combustor geometry investigated in this work is staged transverse injection of air into a Mach 2 freestream. A complete three-dimensional survey of the injectant mole fraction distribution has been generated and a single planar velocity measurement has been completed. The measurements reveal the dramatic effect of streamwise vortices on the mixing of the injectant in the near field of the injectors, as well as the rapid mixing generated by staging two field injectors. Analysis of the downstream decay of the maximum injectant mole fraction in this and other nonreacting combustor geometries indicates that the relative rate of injectant mixing well downstream of the injectors is independent of combustor geometry, combustor Mach number, and injectant molecular weight. Mixing within this region of the combustor is dominated by turbulent diffusion within the injectant plume. The transition of the dominant mixing mechanism, from vortex-driven mixing in the near field to turbulent diffusion in the far field, was found to occur in the region between 10 and 20 jet diameters downstream of the injectors.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AIAA PAPER 92-0093
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-28
    Description: A unified laser-induced fluorescence technique for conducting planar measurements of temperature, pressure and velocity in nonreacting, highly compressible flows has been developed, validated and demonstrated. Planar fluorescence from iodine, seeded into air, was induced by an argon-ion laser and collected using a liquid-nitrogen cooled CCD camera. In the measurement technique, temperature is determined from the fluorescence induced with the laser operated broad band. Pressure and velocity are determined from the shape and position of the fluorescence excitation spectrum which is measured with the laser operated narrow band. The measurement approach described herein provides a means of obtaining accurate, spatially-complete maps of the primary flow field parameters in a wide variety of cold supersonic and transonic flows.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: AIAA PAPER 92-0141
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-28
    Description: Planar measurements of the injectant mole fraction distribution in a nonreacting model SCRAMJET combustor have been made using a nonintrusive optical technique, laser-induced iodine fluorescence. The combustor geometry investigated in this work was staged, transverse sonic injection of air into Mach 2 and Mach 2.9 freestreams. Accurate three-dimensional surveys of the injectant mole fraction distribution for both freestream Mach numbers have been generated. These experimental measurements provide valuable insight into the fluid mechanics of the mixing process. The existence of streamwise vortices is shown to dominate the mixing in the injector nearfield while shock wave interactions with the injectant plume are seen to significantly enhance mixing downstream of the injectors. The effect of combustor Mach number on injectant mixing is found to be small for this geometry. These measurements provide an accurate data set for the validation of computational fluid dynamics codes being developed for the calculation of highly three-dimensional nonreacting supersonic combustor flow fields.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: AIAA PAPER 90-1632
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-06-27
    Description: Covariant Noether identities in covariant field theories
    Keywords: PHYSICS, ATOMIC, MOLECULAR, AND NUCLEAR
    Type: NASA-CR-84006 , R-305
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...