ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1990-04-06
    Description: A complementary DNA (cDNA) clone that encodes inositol 1,4,5-trisphosphate 3-kinase was isolated from a rat brain cDNA expression library with the use of monoclonal antibodies. This clone had an open reading frame that would direct the synthesis of a protein consisting of 449 amino acids and with a molecular mass of 49,853 daltons. The putative protein revealed a potential calmodulin-binding site and six regions with amino acid compositions (PEST regions) common to proteins that are susceptible to calpain. Expression of the cDNA in COS cells resulted in an approximately 150-fold increase in inositol 1,4,5-trisphosphate 3-kinase activity of these cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Choi, K Y -- Kim, H K -- Lee, S Y -- Moon, K H -- Sim, S S -- Kim, J W -- Chung, H K -- Rhee, S G -- New York, N.Y. -- Science. 1990 Apr 6;248(4951):64-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2157285" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Brain/enzymology ; Calcium/metabolism ; Calmodulin/metabolism ; Calpain/antagonists & inhibitors/pharmacology ; Cell Line ; *Cloning, Molecular ; Codon ; DNA/*genetics ; *Gene Expression ; Molecular Sequence Data ; Molecular Weight ; Phosphotransferases/*genetics/metabolism ; *Phosphotransferases (Alcohol Group Acceptor) ; Plasmids ; Rats ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1990-12-07
    Description: A genetic system was developed in Escherichia coli to study leucine zippers with the amino-terminal domain of bacteriophage lambda repressor as a reporter for dimerization. This system was used to analyze the importance of the amino acid side chains at eight positions that form the hydrophobic interface of the leucine zipper dimer from the yeast transcriptional activator, GCN4. When single amino acid substitutions were analyzed, most functional variants contained hydrophobic residues at the dimer interface, while most nonfunctional sequence variants contained strongly polar or helix-breaking residues. In multiple randomization experiments, however, many combinations of hydrophobic residues were found to be nonfunctional, and leucines in the heptad repeat were shown to have a special function in leucine zipper dimerization.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hu, J C -- O'Shea, E K -- Kim, P S -- Sauer, R T -- AI15706/AI/NIAID NIH HHS/ -- GM11117/GM/NIGMS NIH HHS/ -- GM44162/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Dec 7;250(4986):1400-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Massachusetts Institute of Technology, Cambridge 02139.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2147779" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacteriophage lambda/*genetics ; DNA-Binding Proteins/*genetics ; Escherichia coli/*genetics ; Fungal Proteins/*genetics ; Genetic Variation ; Leucine Zippers/*genetics ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Phenotype ; Protein Conformation ; *Protein Kinases ; Random Allocation ; Recombinant Fusion Proteins/metabolism ; *Saccharomyces cerevisiae Proteins ; Transcription Factors/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1991-12-09
    Description: The three-dimensional structure of an active, disulfide cross-linked dimer of the ligand-binding domain of the Salmonella typhimurium aspartate receptor and that of an aspartate complex have been determined by x-ray crystallographic methods at 2.4 and 2.0 angstrom (A) resolution, respectively. A single subunit is a four-alpha-helix bundle with two long amino-terminal and carboxyl-terminal helices and two shorter helices that form a cylinder 20 A in diameter and more than 70 A long. The two subunits in the disulfide-bonded dimer are related by a crystallographic twofold axis in the apo structure, but by a noncrystallographic twofold axis in the aspartate complex structure. The latter structure reveals that the ligand binding site is located more than 60 A from the presumed membrane surface and is at the interface of the two subunits. Aspartate binds between two alpha helices from one subunit and one alpha helix from the other in a highly charged pocket formed by three arginines. The comparison of the apo and aspartate complex structures shows only small structural changes in the individual subunits, except for one loop region that is disordered, but the subunits appear to change orientation relative to each other. The structures of the two forms of this protein provide a step toward understanding the mechanisms of transmembrane signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Milburn, M V -- Prive, G G -- Milligan, D L -- Scott, W G -- Yeh, J -- Jancarik, J -- Koshland, D E Jr -- Kim, S H -- AI 30725/AI/NIAID NIH HHS/ -- DK09765/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1991 Nov 29;254(5036):1342-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of California, Berkeley 94720.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1660187" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Aspartic Acid/metabolism ; Binding Sites ; Disulfides/analysis ; Hydrogen Bonding ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; *Receptors, Amino Acid ; Receptors, Cell Surface/*chemistry/metabolism ; Salmonella typhimurium/metabolism ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1992-01-10
    Description: Many specific DNA-binding proteins bind to sites with dyad symmetry, and the bound form of the protein is a dimer. For some proteins, dimers form in solution and bind to DNA. LexA repressor of Escherichia coli has been used to test an alternative binding model in which two monomers bind sequentially. This model predicts that a repressor monomer should bind with high specificity to an isolated operator half-site. Monomer binding to a half-site was observed. A second monomer bound to an intact operator far more tightly than the first monomer; this cooperativity arose from protein-protein contacts.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, B -- Little, J W -- GM24178/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1992 Jan 10;255(5041):203-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Arizona, Tucson 85721.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1553548" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*metabolism ; Base Sequence ; Binding Sites ; DNA, Bacterial/*metabolism ; DNA-Binding Proteins/*metabolism ; Deoxyribonucleases ; Escherichia coli/*metabolism ; Kinetics ; Macromolecular Substances ; Models, Structural ; Molecular Sequence Data ; Oligodeoxyribonucleotides/metabolism ; Operon ; Rec A Recombinases/genetics ; Repressor Proteins/metabolism ; *Serine Endopeptidases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-08-17
    Description: A recently described class of DNA binding proteins is characterized by the "bZIP" motif, which consists of a basic region that contacts DNA and an adjacent "leucine zipper" that mediates protein dimerization. A peptide model for the basic region of the yeast transcriptional activator GCN4 has been developed in which the leucine zipper has been replaced by a disulfide bond. The 34-residue peptide dimer, but not the reduced monomer, binds DNA with nanomolar affinity at 4 degrees C. DNA binding is sequence-specific as judged by deoxyribonuclease I footprinting. Circular dichroism spectroscopy suggests that the peptide adopts a helical structure when bound to DNA. These results demonstrate directly that the GCN4 basic region is sufficient for sequence-specific DNA binding and suggest that a major function of the GCN4 leucine zipper is simply to mediate protein dimerization. Our approach provides a strategy for the design of short sequence-specific DNA binding peptides.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Talanian, R V -- McKnight, C J -- Kim, P S -- GM13665/GM/NIGMS NIH HHS/ -- GM44162/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Aug 17;249(4970):769-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Nine Cambridge Center, MA 02142.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2389142" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Binding Sites ; Circular Dichroism ; DNA/*metabolism ; DNA-Binding Proteins/*metabolism ; Deoxyribonuclease I ; Disulfides ; Fungal Proteins/*metabolism ; Leucine ; Macromolecular Substances ; Molecular Sequence Data ; Peptides/*metabolism ; Protein Conformation ; *Protein Kinases ; *Saccharomyces cerevisiae Proteins ; Transcription Factors/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1990-09-07
    Description: The post-translational processing of the yeast a-mating pheromone precursor, Ras proteins, nuclear lamins, and some subunits of trimeric G proteins requires a set of complex modifications at their carboxyl termini. This processing includes three steps: prenylation of a cysteine residue, proteolytic processing, and carboxymethylation. In the yeast Saccharomyces cerevisiae, the product of the DPR1-RAM1 gene participates in this type of processing. Through the use of an in vitro assay with peptide substrates modeled after a presumptive a-mating pheromone precursor, it was discovered that mutations in DPR1-RAM1 cause a defect in the prenylation reaction. It was further shown that DPR1-RAM1 encodes an essential and limiting component of a protein prenyltransferase. These studies also implied a fixed order of the three processing steps shared by prenylated proteins: prenylation, proteolysis, then carboxymethylation. Because the yeast protein prenyltransferase could also prenylate human H-ras p21 precursor, the human DPR1-RAM1 analogue may be a useful target for anticancer chemotherapy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schafer, W R -- Trueblood, C E -- Yang, C C -- Mayer, M P -- Rosenberg, S -- Poulter, C D -- Kim, S H -- Rine, J -- GM21328/GM/NIGMS NIH HHS/ -- GM25521/GM/NIGMS NIH HHS/ -- GM35827/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Sep 7;249(4973):1133-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California, Berkeley 94720.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2204115" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cell Compartmentation ; Cholesterol/*metabolism ; DNA Mutational Analysis ; Dimethylallyltranstransferase/*metabolism ; Fungal Proteins/metabolism ; Genes, Fungal ; *Hemiterpenes ; Humans ; In Vitro Techniques ; Molecular Sequence Data ; Oncogene Protein p21(ras)/*metabolism ; Organophosphorus Compounds/metabolism ; Peptides/*metabolism ; Polyisoprenyl Phosphates/metabolism ; Protein Processing, Post-Translational ; Restriction Mapping ; Saccharomyces cerevisiae/*physiology ; Sesquiterpenes ; Transferases/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1992-08-28
    Description: The rate and extent of the agonist-dependent phosphorylation of beta 2-adrenergic receptors and rhodopsin by beta-adrenergic receptor kinase (beta ARK) are markedly enhanced on addition of G protein beta gamma subunits. With a model peptide substrate it was demonstrated that direct activation of the kinase could not account for this effect. G protein beta gamma subunits were shown to interact directly with the COOH-terminal region of beta ARK, and formation of this beta ARK-beta gamma complex resulted in receptor-facilitated membrane localization of the enzyme. The beta gamma subunits of transducin were less effective at both enhancing the rate of receptor phosphorylation and binding to the COOH-terminus of beta ARK, suggesting that the enzyme preferentially binds specific beta gamma complexes. The beta gamma-mediated membrane localization of beta ARK serves to intimately link receptor activation to beta ARK-mediated desensitization.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pitcher, J A -- Inglese, J -- Higgins, J B -- Arriza, J L -- Casey, P J -- Kim, C -- Benovic, J L -- Kwatra, M M -- Caron, M G -- Lefkowitz, R J -- 4R37-HL16039/HL/NHLBI NIH HHS/ -- GM 44944/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1992 Aug 28;257(5074):1264-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Research Institute, Department of Medicine, Duke University Medical Center, Durham, NC 27710.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1325672" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cattle ; *Cyclic AMP-Dependent Protein Kinases ; Dose-Response Relationship, Drug ; Escherichia coli ; GTP-Binding Proteins/*physiology ; Gene Expression Regulation/drug effects ; In Vitro Techniques ; Molecular Sequence Data ; Phosphorylation ; Protein Kinases/*pharmacology ; Protein Processing, Post-Translational ; Receptors, Adrenergic, beta/*drug effects/*metabolism ; Recombinant Fusion Proteins ; Rhodopsin/metabolism ; Time Factors ; Virulence Factors, Bordetella/pharmacology ; beta-Adrenergic Receptor Kinases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1990-12-10
    Description: Familial cancer syndromes have helped to define the role of tumor suppressor genes in the development of cancer. The dominantly inherited Li-Fraumeni syndrome (LFS) is of particular interest because of the diversity of childhood and adult tumors that occur in affected individuals. The rarity and high mortality of LFS precluded formal linkage analysis. The alternative approach was to select the most plausible candidate gene. The tumor suppressor gene, p53, was studied because of previous indications that this gene is inactivated in the sporadic (nonfamilial) forms of most cancers that are associated with LFS. Germ line p53 mutations have been detected in all five LFS families analyzed. These mutations do not produce amounts of mutant p53 protein expected to exert a trans-dominant loss of function effect on wild-type p53 protein. The frequency of germ line p53 mutations can now be examined in additional families with LFS, and in other cancer patients and families with clinical features that might be attributed to the mutation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Malkin, D -- Li, F P -- Strong, L C -- Fraumeni, J F Jr -- Nelson, C E -- Kim, D H -- Kassel, J -- Gryka, M A -- Bischoff, F Z -- Tainsky, M A -- 34936/PHS HHS/ -- 5-T32-CA09299/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1990 Nov 30;250(4985):1233-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Molecular Genetics, Massachusetts General Hospital Cancer Center, Charlestown 02129.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1978757" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Breast Neoplasms/*genetics ; Chromosomes, Human, Pair 17 ; Cloning, Molecular ; Codon ; DNA/genetics ; Deoxyribonucleases, Type II Site-Specific ; *Genes, p53 ; Genetic Testing ; Germ Cells ; Humans ; Molecular Sequence Data ; *Mutation ; Neoplastic Syndromes, Hereditary/*genetics ; Pedigree ; Polymerase Chain Reaction ; Polymorphism, Restriction Fragment Length ; Repetitive Sequences, Nucleic Acid ; Sarcoma/*genetics ; Tumor Suppressor Protein p53/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1991-10-25
    Description: The x-ray crystal structure of a peptide corresponding to the leucine zipper of the yeast transcriptional activator GCN4 has been determined at 1.8 angstrom resolution. The peptide forms a parallel, two-stranded coiled coil of alpha helices packed as in the "knobs-into-holes" model proposed by Crick in 1953. Contacts between the helices include ion pairs and an extensive hydrophobic interface that contains a distinctive hydrogen bond. The conserved leucines, like the residues in the alternate hydrophobic repeat, make side-to-side interactions (as in a handshake) in every other layer of the dimer interface. The crystal structure of the GCN4 leucine zipper suggests a key role for the leucine repeat, but also shows how other features of the coiled coil contribute to dimer formation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉O'Shea, E K -- Klemm, J D -- Kim, P S -- Alber, T -- GM 44162/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1991 Oct 25;254(5031):539-44.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Cambridge, MA 02142.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1948029" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Computer Simulation ; DNA-Binding Proteins/*chemistry ; Fungal Proteins/*chemistry ; Hydrogen Bonding ; *Leucine Zippers ; Macromolecular Substances ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; *Protein Kinases ; *Saccharomyces cerevisiae Proteins ; Transcription Factors/*chemistry ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1992-08-14
    Description: The strengths of electrostatic interactions in biological molecules are difficult to calculate or predict because they occur in complicated, inhomogeneous environments. The electric field at the amino terminus of an alpha helix in water has been determined by measuring the shift in the absorption band for a covalently attached, neutral probe molecule with an electric dipole moment difference between the ground and excited electronic states (an internal Stark effect). The field at the interface between the helix and the solvent is found to be an order of magnitude stronger than expected from the dielectric properties of bulk water. Furthermore, although the total electric dipole moment of the helix increases with length, the electric field at the amino terminus does not.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lockhart, D J -- Kim, P S -- New York, N.Y. -- Science. 1992 Aug 14;257(5072):947-51.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Massachusetts Institute of Technology, Nine Cambridge Center 02142.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1502559" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acids/*chemistry ; Electrochemistry ; Models, Molecular ; Molecular Sequence Data ; Peptides/*chemistry ; *Protein Conformation ; Proteins/*chemistry ; Spectrophotometry, Ultraviolet ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...