ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994  (163)
  • 1975-1979  (47)
  • 1935-1939  (10)
Collection
Language
Years
Year
  • 1
    Series available for loan
    Series available for loan
    Hanover, NH : U.S. Army Cold Regions Research and Engineering Laboratory
    Associated volumes
    Call number: ZSP-201-79/20
    In: CRREL Report, 79-20
    Description / Table of Contents: A volumetric constitutive equation was developed to characterize the behavior of snow subjected to large compressive volumetric deformations. By treating the material as a suspension of air voids in a matrix material of polycrystalline ice, a rate-dependent volumetric constitutive law was formulated and found to accurately predict material response to pressure loads for a wide range of load rates. Comparison of the theory with shock wave data was not considered in this paper, although the constitutive law appears to be valid for such load situations. One application to oversnow mobility of tracked vehicles was made. In this case, power requirements due to snow compaction were calculated parametrically in terms of vehicle speed, track loading, and snow density.
    Type of Medium: Series available for loan
    Pages: v, 13 Seiten , Illustrationen
    Series Statement: CRREL Report 79-20
    Language: English
    Note: CONTENTS Abstract Preface Nomenclature Introduction Material representation of ice Development of the volumetric constitutive law for snow Fully elastic phase Elastic-plastic phase Fully plastic phase Simplified equation Comparison with experimental data Application to vehicle mobility problems Conclusions Literature cited
    Location: AWI Archive
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Series available for loan
    Series available for loan
    Hanover, NH : U.S. Army Cold Regions Research and Engineering Laboratory
    Associated volumes
    Call number: ZSP-201-79/29
    In: CRREL Report, 79-29
    Description / Table of Contents: An analytical study of the propagation of shock waves in snow was carried out to evaluate the response of medium density snow to high rates of loading. One solution was developed for steady shock waves; this resulted in calculation of pressure jump, density jump and stress wave speed. Correlation with available experimental data was found to be good. Nonsteady shock waves were also considered in order to evaluate wave attenuation rates in snow. Very few data were available to compare with the analytical results, so no definite conclusions on the part of the study could be made. The results show, however, that shock waves that produce plastic deformation attenuate at extremely high rates and that differences in pressure between two waves are quickly eliminated within a short distance. Calculations were also made to evaluate the effect of wave frequency on attenuation rates. The results show that, for plastic waves, frequency is not a predominant factor for determining attenuation rates.
    Type of Medium: Series available for loan
    Pages: v, 14 Seiten , Illustrationen
    Series Statement: CRREL Report 79-29
    Language: English
    Note: CONTENTS Abstract Preface Nomenclature I. Introduction II. A constitutive law for snow and balance principles III. Compatibility laws and jump equations for stress waves IV. Steady shock waves in snow V. Comparison of steady-wave theory with experimental results VI. A numerical solution to the nonsteady wave problem VII. Jump equations for nonsteady shock waves VIII. Reduced jump equations Discussion and conclusions Literature cited
    Location: AWI Archive
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Monograph available for loan
    Monograph available for loan
    San Diego [u.a.] : Acad. Press
    Associated volumes
    Call number: AWI A6-92-0470
    In: International geophysics series
    Type of Medium: Monograph available for loan
    Pages: XI, 489 S.
    ISBN: 0121370402
    Series Statement: International geophysics series 47
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-08-31
    Description: The authors profile the field of astronomy, identify some of the key scientific questions that can be addressed during the decade of the 1990's, and recommend several facilities that are critically important for answering these questions. Scientific opportunities for the 1990' are discussed. Areas discussed include protoplanetary disks, an inventory of the solar system, primitive material in the solar system, the dynamics of planetary atmospheres, planetary rings and ring dynamics, the composition and structure of the atmospheres of giant planets, the volcanoes of IO, and the mineralogy of the Martian surface. Critical technology developments, proposed projects and facilities, and recommendations for research and facilities are discussed.
    Keywords: ASTRONOMY
    Type: National Academy of Sciences(National Research Council, Working Papers: Astronomy and Astrophysics Panel Reports; 21 p
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of organic chemistry 44 (1979), S. 1839-1842 
    ISSN: 1520-6904
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 69 (1991), S. 3865-3877 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A systematic theory is presented for the prediction of oxygen migration near a 60° dislocation and for the resulting retardation of dislocation motion. Quantitative predictions are based on the solution of the macroscopic equation for transport of oxygen in the elastic stress field created by the dislocation. The link between the microscopic dynamics of interstitial oxygen within the diamond lattice and macroscopic transport is established by a constitutive model for the dependence of the drift velocity band diffusivity of oxygen on the elastic interaction of oxygen atoms and dislocations and on temperature. The transport equation is solved numerically assuming that the dislocation core is fully saturated with oxygen. The drag force on the gliding dislocation caused by the surrounding oxygen is computed from linear elasticity theory, combined with the phenomenological model of Alexander and Haasen [Solid State Phys. 22, 27 (1968)] for the dependence on the applied stress of the velocity of a dislocation in pure silicon. The predicted dependence of the dislocation velocity on the applied stress at specific temperatures and oxygen concentrations is in qualitative agreement with the experimental data of Imai and Sumino [Philos. Mag. A 47, 599 (1983)].
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 73 (1993), S. 585-600 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The thickness uniformity of photoresist films deposited by spin coating critically influences the resolution of photolithography. This thickness uniformity depends on uniform evaporation from the film during drying. Simple scaling arguments demonstrate that, if the mass transfer coefficient at the surface of the wafer does not vary with radial position, then the dry coated resist film thickness will be independent of radial position. A model is presented for the compressible, laminar, steady-state, axisymmetric air flow in a spin coating apparatus for 6-in.-diam wafers. Flow fields computed by a finite-element–Newton method are used to evaluate the radial profile of the mass transfer coefficient at the surface of the rotating wafer, and to calculate the trajectories of particles that are generated as photoresist is flung from the edge of the spinning wafer. At a spin speed of 2000 revolutions/min and exhaust flow rate of 100 l/min through the coater, the calculations predict that the mass transfer coefficient should be independent of radius. Comparison with film contours measured from experiments at these conditions indicates radial nonuniformities in the film thickness and suggests the importance of hydrodynamic instabilities in the gas on the uniformity of the coating.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 95 (1991), S. 2988-3000 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: A phase-space kinetic theory of dilute polymer solutions is developed to account for the effects of nonhomogeneous velocity and stress fields. The theory allows the configuration distribution function to depend on spatial location and explicitly treats the polymer molecule as an extended object in space. Constitutive equations for the mass flux vector and stress tensor are derived that predict polymer migration induced by stress gradients and nonuniform velocity gradients. In addition, the constitutive equation for stress contains a diffusive term in stress, and hence the model does not fall within the class of simple fluids. Simple shear flow between parallel plates is solved to illustrate the features of the constitutive equations. Asymptotic analysis and numerical calculations show the formation of boundary layers in stress, velocity gradient, and polymer concentration that arise near solid walls as a result of preferential orientation of the polymer molecules there. The thickness of these layers scales as λHDtr/L2, where λH is the relaxation time of the macromolecule modeled as a Hookean dumbbell, Dtr is its translational diffusivity in solution, and L is the characteristic length scale of the macroscopic flow. The presence of these layers causes only a small change in the shear stress measured in typical rheometers, but can have a profound effect on the macroscale flow of polymer solutions in complex geometries by causing apparent fluid slip near solid boundaries.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 58 (1991), S. 1181-1183 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The leveling of a thin-liquid film on a substrate having a mesa-like feature is analyzed by finite element analysis and lubrication theory applied to the free-surface viscous flow problem. The height of the mesa is on the order of 1 μm and has a width on the order of 100 μm; the thin-liquid film is initially conformal to the substrate and has a thickness on the order of 1 μm. Capillarity is found to be the primary driving force for flow. The predicted leveling times from the numerical simulations compare favorably with an analytical solution developed from lubrication theory for the leveling of a thin film on a smooth substrate.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 58 (1991), S. 1842-1844 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Oxygen gettering to dislocations slows and stops dislocation motion caused by applied stress in silicon crystals. A model is presented that quantitatively describes the inhibition of dislocation motion by accounting for the drag caused by the oxygen atmosphere in the crystal around the dislocation and for oxygen aggregates inside the dislocation core. The oxygen distribution is computed by analysis of diffusion and stress-assisted migration in the crystalline lattice. The predictions of the model agree quantitatively with the experimental data of Imai and Sumino. Hysteresis is predicted in the dependence of the dislocation velocity on applied stress and explains the difference in the unlocking and locking stresses for dislocation motion.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...