ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Phosphate uptake (root)  (2)
  • Triticum aestivum  (2)
  • 1990-1994
  • 1980-1984  (4)
Collection
Keywords
Publisher
Years
  • 1990-1994
  • 1980-1984  (4)
Year
  • 1
    ISSN: 1432-2048
    Keywords: Chloride uptake (root) ; Hordeum (ion uptake) ; Ion uptake ; Nutrient deficiency ; Phosphate uptake (root) ; Potassium uptake (root)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The extent to which uptake and transport of either phosphate, potassium or chloride are controlled by the concentration of these ions within the root, perhaps through an allosteric mechanism, was investigated with young barley plants in nutrient solution culture. Plants were grown with their roots divided between two containers, such that a single seminal root was continuously supplied with all the required nutrient ions, while the remaining four or five seminal roots were either supplied with the same solution (controls) or, temporarily, a solution lacking a particular nutrient ion (nutrient-deficient treatment). Compared with controls, there was a marked stimulation of uptake and transport of labelled ions by the single root following 24 h or more of nutrient dificiency to the remainder of the root system. This stimulation, which comprised an increased transport to the shoot and, for all ions except Cl-, increased transport to the remainder of the root system, took place without appreciable change in the concentration of particular ions within the single root. However, nutrient deficiency quickly caused a lower concentration of ions in the shoot and the remaining roots. The results are discussed in relation to various mechanisms, proposed in the literature, by which the coordination of ion uptake and transport may be maintained within the plant. We suggest that under our conditions any putative allosteric control of uptake and transport by root cortical cells was masked by an alternative mechanism, in which ion influx appears to be regulated by ion efflux to the xylem, perhaps controlled by the concentration of particular ions recycled in the phloem to the root from the shoot.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2048
    Keywords: Hordeum (ion uptake) ; Ion uptake ; Nutrient deficiency ; Phosphate uptake (root) ; Potassium uptake (root)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract From measurements of the rates of depletion of labelled ions from solution in the low concentration range, we described the phosphate and potassium uptake characteristics of the roots of intact barley plants in terms of the kinetic parameters, K m and I max (the maximum rate of uptake). In relatively young (13 d) and older (42 d) plants, cessation of phosphate supply for 4 d or more caused a marked increase in I max (up to four times), without concomitant change in K m, which remained between 5 and 7 μM. By contrast, 1 d of potassium starvation with 14-d plants caused a decline in the K m (i.e. an increased apparent affinity for potassium) from 53 μM to 11 μM, without alteration to I max. After longer periods of potassium starvation, I max increased (about two times) while the K m remained at the same low value. Growth of shoots and roots were unaffected by these treatments, so that concentrations of ions in the tissues declined after 1 d or more of nutrient starvation, but we could not identify a characteristic endogenous concentration for either nutrient at which changes in kinetic parameters were invariably induced. The possible mechanisms regulating carriermediated transport, and the importance of changes induced in kinetic parameters in ion uptake from solution and soil are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5036
    Keywords: Aeration ; Calcium ; Carbon dioxide ; Ethylene ; Nitrate ; Nitrite ; Nitrous oxide ; Oxygen ; Potassium ; Roots ; Triticum aestivum ; Waterlogging ; Wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary We report a study of the mechanism by which the response of plants to waterlogging can be modified by soil temperature. Wheat was grown initially in well-aerated soil in a controlled environment room before the soil was flooded with aerated, deionized water. The soil temperature was maintained constant in the range 6–18°C while the air temperature was at 14°C. Waterlogging damage was greater in plants at the higher soil temperatures when the plants were compared at the same chronological age. However, when compared at the same growth stage, the response to soil temperature was little differenti.e. plants subjected to waterlogging for a long time at low soil temperatures exhibited a similar reduction in growth and other properties as those subjected briefly at higher temperatures. The concentration of dissolved oxygen in the soil solution declined rapidly at all temperatures, being almost zero after 36 h waterlogging. Temperature affected rates of change of the concentrations of dissolved carbon dioxide, ethylene, nitrous oxide, nitrite, nitrate, calcium and potassium. The importance of soil-and plant-determined properties in the waterlogging response of plants at different temperatures are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 56 (1980), S. 187-199 
    ISSN: 1573-5036
    Keywords: Aeration ; Anaerobic ; Flooding ; Inorganic nutrients ; Mineral nutrition ; Nutrient accumulation ; Triticum aestivum ; Urea ; Waterlogging
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Decreases in the concentrations of nitrogen, phosphorus, potassium, calcium and magnesium, in the shoots of wheat seedlings soon after the start of waterlogging were mainly attributed to an inhibition of ion uptake and transport by roots in the oxygen deficient soil. There was a small net accumulation of nitrogen, phosphorus and potassium by the aerial tissues, principally the tillers rather than the main shoot. By contrast, calcium and magnesium accumulated in both tillers and main shoot. With waterlogging, nitrogen, phosphorus and potassium were translocated from the older leaves to the younger growing leaves, and in the case of nitrogen this was associated with the onset of premature senescence. Calcium and magnesium were not translocated from the older leaves, the younger leaves acquiring these cations from the waterlogged soil. The promotion of leaf senescence by waterlogging was counteracted by applications of nitrate or ammonium to the soil surface, or by spraying the shoots with solutions of urea, but the beneficial effects on shoot growth were small. The role of mineral nutrition in relation to waterlogging damage to young cereal plants is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...