ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (1)
  • Enzyme conversion  (1)
  • 1990-1994
  • 1980-1984  (1)
  • 1
    ISSN: 1432-2048
    Keywords: Amyloplasts ; Enzyme conversion ; Phosphorylose (starch) ; Senescence ; Solanum ; Starch phosphorylase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Phosphorylase was purified from young and senescent potato tubers. Antibodies raised against the enzyme from young tubers crossreacted with phosphorylase from old tissue, although the latter exhibited different physico-chemical properties. In polyacrylamide gel electrophoresis it migrated with higher mobility, its subunit molecular weight was determined in the range of 40,000 in contrast to 100,000 of the phosphorylase in young tubers. The enzyme of senescent tubers displayed an isoelectric point of 5.4 different from the one of young tubers with 5.0, and the diffusion coefficients of the two enzymes varied. The appearance of the phosphorylase form typical for senescent tissue is connected with changes in the intracellular localization as revealed by immunofluorescence. Before massive starch accumulation is initiated, non-vacuolated subepidermal cells contain antigenically active material in their cytoplasm. During starch accumulation in fully differentiated storage parenchyma, only amyloplasts fluoresce, indicating the presence of adsorbed phosphorylase protein. Cytoplasmic phosphorylase can be detected in the continuance of senescence and, finally, after 16 months of tuber storage, the particle-bound enzyme had mostly disappeared. Simultaneously, we observed membrane destruction and decomposition on the ultrastructural level. The phosphorylase from senescent potatoes is a converted molecule and seems to be formed by proteolytic cleavage. The location of phosphorylase in the amyloplasts during starch synthesis indicates that it also plays a role in starch synthesis and not only in its degradation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...