ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Computational Chemistry and Molecular Modeling  (2)
  • 1990-1994  (2)
  • 1980-1984
  • 1
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: An evaluation of the CHARMm force field for small molecules is described. Using different force field conditions and computational techniques, a wide variety of compounds are analyzed. rms deviations of Cartesian coordinates for 49 diverse organic molecules taken from the Cambridge Crystallographic Data Base and internal coordinate geometries for 28 other molecules are reported. Results are described with different dielectrics, dihedral constraints, and crystal packing to allow analysis of deviations from experimental data and give precise statements of the reliability of the parameters used in the force field. Torsional barriers (rms = 0.4) and conformational energy differences (rms = 0.4) are examined and comparisons made to other force fields such as MM2, Tripos, and DREIDING. The results confirm that CHARMm is an internally consistent all purpose force field with energy terms for bonds, angles, dihedrals, and out-of-plane motions, as well as nonbonded electrostatic and van der Waals interactions. Reported CHARMm results (rms = 0.006 Å for bonds, rms = 1.37° for angles, and rms = 3.2° for dihedrals) are in excellent agreement with high quality electron diffraction data. © 1992 by John Wiley & Sons, Inc.
    Additional Material: 5 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 12 (1991), S. 126-134 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: Higher ionization energies were calculated with PM3, AM1, and MNDO for three series of molecules, representative small molecules, molecules containing heteroatoms, and sterically congested alkenes. Values from PM3, AM1, and MNDO were compared to experimental values. In most instances, the semiempirical calculations correctly predict the ordering of higher ionization energies. In the absence of steric hindrance, MNDO is the method of choice. Within groups of molecules, AM1 performs better on hydrocarbons, especially twisted hydrocarbons, than PM3. PM3 commonly gives sigma orbitals which are too high in energy compared to related pi orbitals. PM3 performed better than AM1 with molecules containing oxygen, but failed to give the correct geometry for hydrogen peroxide.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...