ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Photosystem II  (4)
  • Springer  (4)
  • Periodicals Archive Online (PAO)
  • 1990-1994  (3)
  • 1980-1984  (1)
Collection
Publisher
  • Springer  (4)
  • Periodicals Archive Online (PAO)
Years
Year
  • 1
    ISSN: 1573-5052
    Keywords: Greenhouse effect ; Chlorophyll fluorescence ; RubisCQ ; Photosystem II ; Stomata ; Quantum efficiency
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Understanding how photosynthetic capacity acclimatises when plants are grown in an atmosphere of rising CO2 concentrations will be vital to the development of mechanistic models of the response of plant productivity to global environmental change. A limitation to the study of acclimatisation is the small amount of material that may be destructively harvested from long-term studies of the effects of elevation of CO2 concentration. Technological developments in the measurement of gas exchange, fluorescence and absorption spectroscopy, coupled with theoretical developments in the interpretation of measured values now allow detailed analyses of limitations to photosynthesisin vivo. The use of leaf chambers with Ulbricht integrating spheres allows separation of change in the maximum efficiency of energy transduction in the assimilation of CO2 from changes in tissue absorptance. Analysis of the response of CO2 assimilation to intercellular CO2 concentration allows quantitative determination of the limitation imposed by stomata, carboxylation efficiency, and the rate of regeneration of ribulose 1:5 bisphosphate. Chlorophyll fluorescence provides a rapid method for detecting photoinhibition in heterogeneously illuminated leaves within canopies in the field. Modulated fluorescence and absorption spectroscopy allow parallel measurements of the efficiency of light utilisation in electron transport through photosystems I and IIin situ.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 37 (1993), S. 89-102 
    ISSN: 1573-5079
    Keywords: C4 photosynthesis ; chlorophyll fluorescence ; CO2 assimilation ; maize ; Photosystem II ; quantum yield
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Analysis is made of the energetics of CO2 fixation, the photochemical quantum requirement per CO2 fixed, and sinks for utilising reductive power in the C4 plant maize. CO2 assimilation is the primary sink for energy derived from photochemistry, whereas photorespiration and nitrogen assimilation are relatively small sinks, particularly in developed leaves. Measurement of O2 exchange by mass spectrometry and CO2 exchange by infrared gas analysis under varying levels of CO2 indicate that there is a very close relationship between the true rate of O2 evolution from PS II and the net rate of CO2 fixation. Consideration is given to measurements of the quantum yields of PS II (φ PS II) from fluorescence analysis and of CO2 assimilation ( $$\phi _{CO_2 } $$ ) in maize over a wide range of conditions. The $${{\phi _{PSII} } \mathord{\left/ {\vphantom {{\phi _{PSII} } {\phi _{CO_2 } }}} \right. \kern-\nulldelimiterspace} {\phi _{CO_2 } }}$$ ratio was found to remain reasonably constant (ca. 12) over a range of physiological conditions in developed leaves, with varying temperature, CO2 concentrations, light intensities (from 5% to 100% of full sunlight), and following photoinhibition under high light and low temperature. A simple model for predicting CO2 assimilation from fluorescence parameters is presented and evaluated. It is concluded that under a wide range of conditions fluorescence parameters can be used to predict accurately and rapidly CO2 assimilation rates in maize.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5079
    Keywords: CO2 assimilation ; light harvesting chlorophyll a/b protein complex ; Photosystem I ; Photosystem II ; protein phosphorylation ; quantum yield ; State transition
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Wheat leaves were exposed to light treatments that excite preferentially Photosystem I (PS I) or Photosystem II (PS II) and induce State 1 or State 2, respectively. Simultaneous measurements of CO2 assimilation, chlorophyll fluorescence and absorbance at 820 nm were used to estimate the quantum efficiencies of CO2 assimilation and PS II and PS I photochemistry during State transitions. State transitions were found to be associated with changes in the efficiency with which an absorbed photon is transferred to an open PS II reaction centre, but did not correlate with changes in the quantum efficiencies of PS II photochemistry or CO2 assimilation. Studies of the phosphorylation status of the light harvesting chlorophyll protein complex associated with PS II (LHC II) in wheat leaves and using chlorina mutants of barley which are deficient in this complex demonstrate that the changes in the effective antennae size of Photosystem II occurring during State transitions require LHC II and correlate with the phosphorylation status of LHC II. However, such correlations were not found in maize leaves. It is concluded that State transitions in C3 leaves are associated with phosphorylation-induced modifications of the PS II antennae, but these changes do not serve to optimise the use of light absorbed by the leaf for CO2 assimilation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Journal of bioenergetics and biomembranes 14 (1982), S. 249-264 
    ISSN: 1573-6881
    Keywords: Photosystem II ; photosystem II site-specificity ; chloroplast membranes ; ATPase proton pump ; proton processing ; intramembrane proton interaction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Physics
    Notes: Abstract The chloroplast thylakoid ATPase proton pump-driven H+ accumulation in the dark was compared to the light-dependent proton pump driven by either photosystem II or I, in regard to the effects of the resultant acidity on chemical modification reactions. The assays used to detect the acidity effects were: (a) the incorporation of [3H]-acetic anhydride into membrane protein −NH2 groups, and (b) the effect of a certain level of that chemical modification on inhibition of photosystem II water oxidation activity. Based on labeling data with [3H]-acetic anhydride, 20–30 nmol · (mg chl)−1 of −NH 3 + groups appear to be metastable in the dark in untreated membranes. The term metastable is used because proton leak-inducing treatments in the dark lead to about 20–30 nmol · (mg chl)−1 increase in acetic anhydride labeling, probably due to reaction with the −NH2 form of amine groups. Addition of low levels of uncoupler or a brief thermal treatment caused a loss of protons from the membrane equivalent to the increase in acetic anhydride derivatization. The increase in acetic anhydride derivatization caused inhibition of water oxidation activity. Using thermally sensitized membranes, photosystem II but not photosystem I electron transport (each giving a steady-state proton accumulation of about 50 nmol H+ · (mg chl)−1 restored the lower level of acetic anhydride reactivity as in previous results (Bakeret al., 1981). In dark-maintained, thermally treated membranes, ATPase activity, i.e., the proton pump associated with it, also restored the lower level of acetic anhydride labeling, and again acetic anhydride no longer inhibited water oxidation. Because photosystem I activity did not elicit this type of response to acetic anhydride, there appears to be a pathway for ATPase pumped protons which allows them to reach a restricted domain, perhaps intramembrane, common with the photosystem II water oxidation mechanism and unavailable to protons pumped by photosystem I. The membrane structure(s) which determines this site specificity is not yet understood.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...