ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Concanavalin A  (1)
  • Directed turn  (1)
  • Springer  (2)
  • Oxford University Press
  • Society of Economic Geologists (SEG)
  • 1990-1994  (2)
  • 1980-1984
Collection
Publisher
  • Springer  (2)
  • Oxford University Press
  • Society of Economic Geologists (SEG)
Years
  • 1990-1994  (2)
  • 1980-1984
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of comparative physiology 167 (1990), S. 245-255 
    ISSN: 1432-1351
    Keywords: Undulatory locomotion ; Scanning motion ; Directed turn ; Orientation ; Phototaxis ; Klinotaxis ; Photomovement ; Nematode
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The gravid females of Mermis are positively phototaxic at the time of their migration to egglaying sites in vegetation on which their grasshopper hosts feed. On a horizontal felt surface, segments of the path traced by the tail are oriented approximately towards a source of monochromatic light in the 350–540 nm region, but are not oriented at longer wavelengths and in the dark. The components of this phototaxis include locomotion by the posterior 4/5 of the body, orientational bending of the neck region while the anterior is held above the substrate, and a scanning motion (bending) of the head region (anterior 2 mm). Like other nematodes and snakes, propulsion is associated with posteriorly propagated body waves, but unlike other animals known, the waves tend to lie perpendicular to a felt surface, and unlike other nematodes, contact with the surface is on the female's ventral surface. The body waves are initiated by the motion of the anterior 1/5 (15 mm) of the body, the average orientation of which determines the path of the following 4/5. During phototaxis, the anterior tip is swung both sideways and vertically about the direction towards the light source. The tip motion is a result of a scanning motion of the head and a slower orientational bending of the neck. The base of the head appears to be actively directed towards the source by the bending of the neck. This behavior can resolve two light sources positioned 120° apart but not 90° apart. The scanning motion of the head is independent of neck orientation and appears to enhance the probability of discovering the direction of a new source. Discovery is followed by a directed turn of the base of the head towards the source which is initiated by the bending of the neck. Locomotion of the body follows the path of the anterior through the turn and phototaxis is thus initiated.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1615-6102
    Keywords: Saprolegnia ; Lectins ; Concanavalin A ; Wheat germ agglutinin ; Monoclonal antibodies ; Ultrastructure ; Pathogenesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The importance of the surface structure and chemistry in zoospores and cysts of oomycetes is briefly reviewed and the organelle systems associated with encystment described. The surface structure and chemistry of primary and secondary zoospores and cysts ofSaprolegnia diclina (a representative saprophytic species) andS. parasitica (a representative salmonid fish pathogen) were explored using the lectins concanavilin A (Con A) and wheat germ agglutinin (WGA) and monoclonal antibodies (MAbs) raised against a mixed zoospore and cyst suspension ofS. parasitica. The binding of lectins and antibodies to spores was determined using immunofluorescence microscopy with fluorescein isothiocyanate-labelled probes and with electron microscopy with gold-conjugated probes applied to spore suspensions post-fixation. In both species Con A, which is specific for glucose and mannose sugars, bound to both the surface of primary and secondary zoospores (the surface glycocalyx) and their cyst coats and readily induced zoospore encystment. The binding to the cysts appeared to be mainly associated with the matrix material released from the primary and secondary encystment vesicles and which appeared to diminish with time. No binding to germ tube walls was observed with this lectin. The MAb labelling showed a generally similar binding pattern to the primary and secondary cysts to that observed with Con A, although the binding to zoospores was more variable. Primary zoospores bound the antibodies but secondary zoospores appeared less reactive. It is suggested that the MAbs share a common epitope with one or more of the Con A-binding components. In both species WGA, which is specific for amongst other things the sugar N-acetyl glucosamine, bound to localised apical patches on the primary zoospores. This lectin also binds to the ventral groove region of secondary zoospores ofS. diclina, which were induced to encyst by this lectin. In contrast secondary zoospores ofS. parasitica were not induced to encyst by the addition of WGA and showed a patchy dorsal binding with this lectin. WGA also binds to both the inner wall of discharged primary cysts and the young germ tube walls of both species. These observations are discussed both in relation to other oomycete spores and to their possible functional and ecological significance.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...